AABB and Sphere Bounds with new BVH tree implement with go 1.18 generic

This commit is contained in:
Tnze
2022-03-18 11:10:55 +08:00
parent ed742efb97
commit 00de623cc2
7 changed files with 513 additions and 263 deletions

5
go.mod
View File

@ -1,8 +1,9 @@
module github.com/Tnze/go-mc
go 1.16
go 1.18
require (
github.com/google/uuid v1.1.1
github.com/iancoleman/strcase v0.1.3
)
golang.org/x/exp v0.0.0-20220314205449-43aec2f8a4e7
)

2
go.sum
View File

@ -2,3 +2,5 @@ github.com/google/uuid v1.1.1 h1:Gkbcsh/GbpXz7lPftLA3P6TYMwjCLYm83jiFQZF/3gY=
github.com/google/uuid v1.1.1/go.mod h1:TIyPZe4MgqvfeYDBFedMoGGpEw/LqOeaOT+nhxU+yHo=
github.com/iancoleman/strcase v0.1.3 h1:dJBk1m2/qjL1twPLf68JND55vvivMupZ4wIzE8CTdBw=
github.com/iancoleman/strcase v0.1.3/go.mod h1:SK73tn/9oHe+/Y0h39VT4UCxmurVJkR5NA7kMEAOgSE=
golang.org/x/exp v0.0.0-20220314205449-43aec2f8a4e7 h1:jynE66seADJbyWMUdeOyVTvPtBZt7L6LJHupGwxPZRM=
golang.org/x/exp v0.0.0-20220314205449-43aec2f8a4e7/go.mod h1:lgLbSvA5ygNOMpwM/9anMpWVlVJ7Z+cHWq/eFuinpGE=

View File

@ -0,0 +1,59 @@
package bvh
import (
"golang.org/x/exp/constraints"
"math"
)
type AABB[I constraints.Signed | constraints.Float, V interface {
Add(V) V
Sub(V) V
Max(V) V
Min(V) V
Less(V) bool
More(V) bool
Sum() I
}] struct{ Upper, Lower V }
func (aabb AABB[I, V]) WithIn(point V) bool {
return aabb.Lower.Less(point) && aabb.Upper.More(point)
}
func (aabb AABB[I, V]) Touch(other AABB[I, V]) bool {
return aabb.Lower.Less(other.Upper) && other.Lower.Less(aabb.Upper) &&
aabb.Upper.More(other.Lower) && other.Upper.More(aabb.Lower)
}
func (aabb AABB[I, V]) Union(other AABB[I, V]) AABB[I, V] {
return AABB[I, V]{Upper: aabb.Upper.Max(other.Upper), Lower: aabb.Lower.Min(other.Lower)}
}
func (aabb AABB[I, V]) Surface() I { return aabb.Upper.Sub(aabb.Lower).Sum() * 2 }
type Sphere[I constraints.Float, V interface {
Add(V) V
Sub(V) V
Mul(I) V
Max(V) V
Min(V) V
Less(V) bool
More(V) bool
Norm() I
Sum() I
}] struct {
Center V
R I
}
func (s Sphere[I, V]) WithIn(point V) bool {
return s.Center.Sub(point).Norm() < s.R
}
func (s Sphere[I, V]) Touch(other Sphere[I, V]) bool {
return s.Center.Sub(other.Center).Norm() < s.R+other.R
}
func (s Sphere[I, V]) Union(other Sphere[I, V]) Sphere[I, V] {
d := other.Center.Sub(s.Center).Norm()
r1r2d := (s.R - other.R) / d
return Sphere[I, V]{
Center: s.Center.Mul(1 + r1r2d).Add(other.Center.Mul(1 - r1r2d)),
R: d + s.R + other.R,
}
}
func (s Sphere[I, V]) Surface() I { return I(2 * math.Pi * s.R) }

View File

@ -0,0 +1,38 @@
package bvh
import "testing"
func TestAABB_WithIn(t *testing.T) {
aabb := AABB[float64, Vec2[float64]]{
Upper: Vec2[float64]{2, 2},
Lower: Vec2[float64]{-1, -1},
}
if !aabb.WithIn(Vec2[float64]{0, 0}) {
panic("(0, 0) should included")
}
if aabb.WithIn(Vec2[float64]{-2, -2}) {
panic("(-2, -2) shouldn't included")
}
aabb2 := AABB[int, Vec3[int]]{
Upper: Vec3[int]{1, 1, 1},
Lower: Vec3[int]{-1, -1, -1},
}
if !aabb2.WithIn(Vec3[int]{0, 0, 0}) {
panic("(0, 0, 0) should included")
}
if aabb2.WithIn(Vec3[int]{-2, -2, 0}) {
panic("(-2, -2, 0) shouldn't included")
}
sphere := Sphere[float64, Vec2[float64]]{
Center: Vec2[float64]{0, 0},
R: 1.0,
}
if !sphere.WithIn(Vec2[float64]{0, 0}) {
t.Errorf("(0,0) is in")
}
if sphere.WithIn(Vec2[float64]{1, 1}) {
t.Errorf("(1,1) isn't in")
}
}

View File

@ -1,158 +1,211 @@
package bvh
import (
"container/heap"
"math"
)
type Vec2 [2]float64
func (v Vec2) Add(other Vec2) Vec2 { return Vec2{v[0] + other[0], v[1] + other[1]} }
func (v Vec2) Sub(other Vec2) Vec2 { return Vec2{v[0] - other[0], v[1] - other[1]} }
func (v Vec2) Max(other Vec2) Vec2 { return Vec2{math.Max(v[0], other[0]), math.Max(v[1], other[1])} }
func (v Vec2) Min(other Vec2) Vec2 { return Vec2{math.Min(v[0], other[0]), math.Min(v[1], other[1])} }
type AABB2 struct{ Upper, Lower Vec2 }
func (aabb AABB2) WithIn(point Vec2) bool {
return aabb.Lower[0] < point[0] && point[0] < aabb.Upper[0] &&
aabb.Lower[1] < point[1] && point[1] < aabb.Upper[1]
}
func (aabb AABB2) Union(other AABB2) AABB2 {
return AABB2{
Upper: aabb.Upper.Max(other.Upper),
Lower: aabb.Lower.Min(other.Lower),
}
}
func (aabb AABB2) Surface() float64 {
d := aabb.Upper.Sub(aabb.Lower)
return 2 * (d[0] + d[1])
}
type Node2 struct {
box AABB2
Value interface{}
parent *Node2
children [2]*Node2
isLeaf bool
}
func (n *Node2) findAnotherChild(not *Node2) *Node2 {
if n.isLeaf {
return nil
} else if n.children[0] == not {
return n.children[1]
} else if n.children[1] == not {
return n.children[0]
}
panic("unreachable, please make sure the 'not' is the n's child")
}
type Tree2 struct {
root *Node2
}
func (t *Tree2) Insert(leaf AABB2) (n *Node2) {
n = &Node2{
box: leaf,
parent: nil,
children: [2]*Node2{},
isLeaf: true,
}
if t.root == nil {
t.root = n
return
}
// Stage 1: find the best sibling for the new leaf
sibling := t.root
bestCost := t.root.box.Union(leaf).Surface()
parentTo := &t.root // the parent's children pointer which point to the sibling
queue := searchHeap{searchItem{pointer: t.root, parentTo: &t.root}}
leafCost := leaf.Surface()
for len(queue) > 0 {
p := heap.Pop(&queue).(searchItem)
// determine if node p has the best cost
mergeSurface := p.pointer.box.Union(leaf).Surface()
deltaCost := mergeSurface - p.pointer.box.Surface()
cost := p.inheritedCost + mergeSurface
if cost < bestCost {
bestCost = cost
sibling = p.pointer
parentTo = p.parentTo
}
// determine if it is worthwhile to explore the children of node p.
inheritedCost := p.inheritedCost + deltaCost // lower bound
if inheritedCost+leafCost < bestCost {
if p.pointer.children[0] != nil {
heap.Push(&queue, searchItem{
pointer: p.pointer.children[0],
parentTo: &p.pointer.children[0],
inheritedCost: inheritedCost,
})
}
if p.pointer.children[1] != nil {
heap.Push(&queue, searchItem{
pointer: p.pointer.children[1],
parentTo: &p.pointer.children[1],
inheritedCost: inheritedCost,
})
}
}
}
// Stage 2: create a new parent
*parentTo = &Node2{
box: sibling.box.Union(leaf), // we will calculate in Stage3
parent: sibling.parent,
children: [2]*Node2{sibling, n},
isLeaf: false,
}
n.parent = *parentTo
sibling.parent = *parentTo
// Stage 3: walk back up the tree refitting AABBs
for p := *parentTo; p.parent != nil; p = p.parent {
p.box = p.children[0].box.Union(p.children[1].box)
//TODO: t.rotate(p)
}
return
}
func (t *Tree2) Find(point Vec2, f func(*Node2)) {
t.root.lookup(point, f)
}
func (n *Node2) lookup(point Vec2, f func(node2 *Node2)) {
if n == nil || !n.box.WithIn(point) {
return
}
if n.isLeaf {
f(n)
} else {
n.children[0].lookup(point, f)
n.children[1].lookup(point, f)
}
}
type searchHeap []searchItem
type searchItem struct {
pointer *Node2
parentTo **Node2
inheritedCost float64
}
func (h searchHeap) Len() int { return len(h) }
func (h searchHeap) Less(i, j int) bool { return h[i].inheritedCost < h[j].inheritedCost }
func (h searchHeap) Swap(i, j int) { h[i], h[j] = h[j], h[i] }
func (h *searchHeap) Push(x interface{}) { *h = append(*h, x.(searchItem)) }
func (h *searchHeap) Pop() interface{} {
old := *h
n := len(old)
x := old[n-1]
*h = old[0 : n-1]
return x
}
//
//import (
// "container/heap"
// "fmt"
// "golang.org/x/exp/constraints"
//)
//
//type Node[Vec constraints.Signed | constraints.Float, B interface {
// WithIn(Vec) bool
// Union(B) B
// Surface() float64
//}, V any] struct {
// box B
// Value V
// parent *Node[Vec, B, V]
// children [2]*Node[Vec, B, V]
// isLeaf bool
//}
//
//func (n *Node[Vec, B, V]) findAnotherChild(not *Node[Vec, B, V]) *Node[Vec, B, V] {
// if n.children[0] == not {
// return n.children[1]
// } else if n.children[1] == not {
// return n.children[0]
// }
// panic("unreachable, please make sure the 'not' is the n's child")
//}
//
//func (n *Node[Vec, B, V]) findChildPointer(child *Node[Vec, B, V]) **Node[Vec, B, V] {
// if n.children[0] == child {
// return &n.children[0]
// } else if n.children[1] == child {
// return &n.children[1]
// }
// panic("unreachable, please make sure the 'not' is the n's child")
//}
//
//type Tree[I constraints.Signed | constraints.Float, B interface {
// Union(B) B
// Surface() I
//}, V any] struct {
// root *Node[I, B, V]
//}
//
//func (t *Tree[Vec, B, V]) Insert(leaf B, value V) (n *Node[Vec, B, V]) {
// n = &Node[Vec, B, V]{
// box: leaf,
// Value: value,
// parent: nil,
// children: [2]*Node[Vec, B, V]{},
// isLeaf: true,
// }
// if t.root == nil {
// t.root = n
// return
// }
//
// // Stage 1: find the best sibling for the new leaf
// sibling := t.root
// bestCost := t.root.box.Union(leaf).Surface()
// parentTo := &t.root // the parent's children pointer which point to the sibling
// queue := searchHeap[Node[Vec, B, V]]{searchItem[Node[Vec, B, V]]{pointer: t.root, parentTo: &t.root}}
//
// leafCost := leaf.Surface()
// for queue.Len() > 0 {
// p := heap.Pop(&queue).(searchItem[Node[Vec, B, V]])
// // determine if node p has the best cost
// mergeSurface := p.pointer.box.Union(leaf).Surface()
// deltaCost := mergeSurface - p.pointer.box.Surface()
// cost := p.inheritedCost + mergeSurface
// if cost <= bestCost {
// bestCost = cost
// sibling = p.pointer
// parentTo = p.parentTo
// }
// // determine if it is worthwhile to explore the children of node p.
// inheritedCost := p.inheritedCost + deltaCost // lower bound
// if !p.pointer.isLeaf && inheritedCost+leafCost < bestCost {
// heap.Push(&queue, searchItem[Node[Vec, B, V]]{
// pointer: p.pointer.children[0],
// parentTo: &p.pointer.children[0],
// inheritedCost: inheritedCost,
// })
// heap.Push(&queue, searchItem[Node[Vec, B, V]]{
// pointer: p.pointer.children[1],
// parentTo: &p.pointer.children[1],
// inheritedCost: inheritedCost,
// })
// }
// }
//
// // Stage 2: create a new parent
// *parentTo = &Node[Vec, B, V]{
// box: sibling.box.Union(leaf), // we will calculate in Stage3
// parent: sibling.parent,
// children: [2]*Node[Vec, B, V]{sibling, n},
// isLeaf: false,
// }
// n.parent = *parentTo
// sibling.parent = *parentTo
//
// // Stage 3: walk back up the tree refitting AABBs
// for p := *parentTo; p != nil; p = p.parent {
// p.box = p.children[0].box.Union(p.children[1].box)
// t.rotate(p)
// }
// return
//}
//
//func (t *Tree[Vec, B, V]) Delete(n *Node[Vec, B, V]) interface{} {
// if n.parent == nil {
// // n is the root
// t.root = nil
// return n.Value
// }
// sibling := n.parent.findAnotherChild(n)
// grand := n.parent.parent
// if grand == nil {
// // n's parent is root
// t.root = sibling
// sibling.parent = nil
// } else {
// p := grand.findChildPointer(n.parent)
// *p = sibling
// sibling.parent = grand
// for p := sibling.parent; p.parent != nil; p = p.parent {
// p.box = p.children[0].box.Union(p.children[1].box)
// t.rotate(p)
// }
// }
// return n.Value
//}
//
//func (t *Tree[Vec, B, V]) rotate(n *Node[Vec, B, V]) {
// if n.isLeaf || n.parent == nil {
// return
// }
// // trying to swap n's sibling and children
// sibling := n.parent.findAnotherChild(n)
// current := n.box.Surface()
// if n.children[1].box.Union(sibling.box).Surface() < current {
// // swap n.children[0] and sibling
// n.parent.children, n.children, n.children[0].parent, sibling.parent = [2]*Node[Vec, B, V]{n, n.children[0]}, [2]*Node[Vec, B, V]{sibling, n.children[1]}, n.parent, n
// n.box = n.children[0].box.Union(n.children[1].box)
// } else if n.children[0].box.Union(sibling.box).Surface() < current {
// // swap n.children[1] and sibling
// n.parent.children, n.children, n.children[1].parent, sibling.parent = [2]*Node[Vec, B, V]{n, n.children[1]}, [2]*Node[Vec, B, V]{sibling, n.children[0]}, n.parent, n
// n.box = n.children[0].box.Union(n.children[1].box)
// }
//}
//
////func lookupPoint[B interface {
//// Union(B) B
//// Surface() float64
////}, V any](n *Node[B, V], point Vec2, f func(v V)) {
//// if n == nil || !n.box.WithIn(point) {
//// return
//// }
//// if n.isLeaf {
//// f(n.Value)
//// } else {
//// lookupVec(n.children[0], point, f)
//// lookupVec(n.children[1], point, f)
//// }
////}
//
////
////func lookupAABB(n *Node, aabb AABB, f func(v interface{})) {
//// if n == nil || !n.box.Touch(aabb) {
//// return
//// }
//// if n.isLeaf {
//// f(n.Value)
//// } else {
//// lookupAABB(n.children[0], aabb, f)
//// lookupAABB(n.children[1], aabb, f)
//// }
////}
//
//type searchHeap[V any] []searchItem[V]
//type searchItem[V any] struct {
// pointer *V
// parentTo **V
// inheritedCost float64
//}
//
//func (h searchHeap[V]) Len() int { return len(h) }
//func (h searchHeap[V]) Less(i, j int) bool { return h[i].inheritedCost < h[j].inheritedCost }
//func (h searchHeap[V]) Swap(i, j int) { h[i], h[j] = h[j], h[i] }
//func (h *searchHeap[V]) Push(x interface{}) { *h = append(*h, x.(searchItem[V])) }
//func (h *searchHeap[V]) Pop() interface{} {
// old := *h
// n := len(old)
// x := old[n-1]
// *h = old[0 : n-1]
// return x
//}
//
//func (t Tree[Vec, B, V]) String() string {
// return t.root.String()
//}
//
//func (n *Node[Vec, B, V]) String() string {
// if n.isLeaf {
// return fmt.Sprint(n.Value)
// } else {
// return fmt.Sprintf("{%v, %v}", n.children[0], n.children[1])
// }
//}

View File

@ -1,107 +1,148 @@
package bvh
import (
"fmt"
"math/rand"
"strings"
"testing"
)
func TestTree2_Insert(t *testing.T) {
aabbs := []AABB2{
{Upper: Vec2{1, 1}, Lower: Vec2{0, 0}},
{Upper: Vec2{2, 1}, Lower: Vec2{1, 0}},
{Upper: Vec2{11, 1}, Lower: Vec2{10, 0}},
{Upper: Vec2{12, 1}, Lower: Vec2{11, 0}},
{Upper: Vec2{101, 1}, Lower: Vec2{100, 0}},
{Upper: Vec2{102, 1}, Lower: Vec2{101, 0}},
{Upper: Vec2{111, 1}, Lower: Vec2{110, 0}},
{Upper: Vec2{112, 1}, Lower: Vec2{111, 0}},
{Upper: Vec2{1, 1}, Lower: Vec2{-1, -1}},
}
var bvh Tree2
for _, aabb := range aabbs {
bvh.Insert(aabb)
// visualize
var sb strings.Builder
toString(&sb, bvh.root)
t.Log(sb.String())
}
bvh.Find(Vec2{0.5, 0.5}, func(n *Node2) {
t.Logf("find! %v", n.box)
})
}
func TestTree2_Insert2_notLinkedTable(t *testing.T) {
const items = 1000
var bvh Tree2
for i := 0; i < items; i++ {
pos := Vec2{0, float64(i)}
bvh.Insert(AABB2{
Upper: Vec2{pos[0] + 1, pos[1] + 1},
Lower: Vec2{pos[0], pos[1]},
})
}
//calc depth
if depth := lookupDepth(bvh.root); depth > items/2 {
t.Errorf("the bvh is unbalanced: depth %d", depth)
} else {
t.Logf("the depth of bvh with %d element is %d", items, depth)
}
}
func toString(sb *strings.Builder, n *Node2) {
if n.isLeaf {
_, _ = fmt.Fprintf(sb, "(%v,%v)", n.box.Upper[1], n.box.Upper[0])
return
}
sb.WriteByte('{')
v1 := n.children[0]
if v1 != nil {
toString(sb, v1)
}
v2 := n.children[1]
if v2 != nil {
if v1 != nil {
sb.WriteString(", ")
}
toString(sb, v2)
}
sb.WriteByte('}')
}
func lookupDepth(n *Node2) int {
depth := 0
for _, child := range n.children {
if child != nil {
subdepth := lookupDepth(child)
if subdepth > depth {
depth = subdepth
}
}
}
return depth + 1 // add itself
}
func BenchmarkTree2_Insert(b *testing.B) {
const size = 25
// generate test cases
aabbs := make([]AABB2, b.N)
poses := make([]Vec2, b.N)
for i := range aabbs {
poses[i] = Vec2{rand.Float64() * 1e4, rand.Float64() * 1e4}
aabbs[i] = AABB2{
Upper: Vec2{poses[i][0] + size, poses[i][0] + size},
Lower: Vec2{poses[i][0] - size, poses[i][0] - size},
}
}
b.ResetTimer()
var bvh Tree2
for _, v := range aabbs {
bvh.Insert(v)
}
for _, v := range poses {
bvh.Find(v, func(n *Node2) {})
}
}
//
//import (
// "math/rand"
// "testing"
//)
//
//func TestTree2_Insert(t *testing.T) {
// aabbs := []AABB[Vec2[float64]]{
// {Upper: Vec2[float64]{1, 1}, Lower: Vec2[float64]{0, 0}},
// {Upper: Vec2[float64]{2, 1}, Lower: Vec2[float64]{1, 0}},
// {Upper: Vec2[float64]{11, 1}, Lower: Vec2[float64]{10, 0}},
// {Upper: Vec2[float64]{12, 1}, Lower: Vec2[float64]{11, 0}},
// {Upper: Vec2[float64]{101, 1}, Lower: Vec2[float64]{100, 0}},
// {Upper: Vec2[float64]{102, 1}, Lower: Vec2[float64]{101, 0}},
// {Upper: Vec2[float64]{111, 1}, Lower: Vec2[float64]{110, 0}},
// {Upper: Vec2[float64]{112, 1}, Lower: Vec2[float64]{111, 0}},
// {Upper: Vec2[float64]{1, 1}, Lower: Vec2[float64]{-1, -1}},
// }
// var bvh Tree[float64, AABB[Vec2[float64]], int]
// for i, aabb := range aabbs {
// bvh.Insert(aabb, i)
// // visualize
// t.Log(bvh)
// }
// //bvh.FindVec(Vec2{0.5, 0.5}, func(v interface{}) {
// // t.Logf("find! %v", v)
// //})
//}
//
//func TestTree2_FindVec(t *testing.T) {
// aabbs := []AABB[Vec2[float64]]{
// {Upper: Vec2[float64]{2, 2}, Lower: Vec2[float64]{-1, -1}},
// {Upper: Vec2[float64]{2, 1}, Lower: Vec2[float64]{-1, -2}},
// {Upper: Vec2[float64]{1, 1}, Lower: Vec2[float64]{-2, -2}},
// {Upper: Vec2[float64]{1, 2}, Lower: Vec2[float64]{-2, -1}},
// }
// var bvh Tree[float64, AABB[Vec2[float64]], int]
// for i, aabb := range aabbs {
// bvh.Insert(aabb, i)
// // visualize
// t.Log(bvh)
// }
// //findVec := func(vec Vec2) (list []interface{}) {
// // bvh.FindVec(vec, func(v interface{}) { list = append(list, v) })
// // return
// //}
// //t.Log(findVec(Vec2{0, 0}))
// //t.Log(findVec(Vec2{1.5, 0}))
// //t.Log(findVec(Vec2{1.5, 1.5}))
// //t.Log(findVec(Vec2{-1.5, 0}))
// //
// //findAABB := func(aabb AABB2) (list []interface{}) {
// // bvh.FindAABB(aabb, func(v interface{}) { list = append(list, v) })
// // return
// //}
// //t.Log(findAABB(AABB2{Upper: Vec2{1, 1}, Lower: Vec2{-1, -1}}))
// //t.Log(findAABB(AABB2{Upper: Vec2{3, 3}, Lower: Vec2{1.5, 1.5}}))
// //t.Log(findAABB(AABB2{Upper: Vec2{-1.5, 0.5}, Lower: Vec2{-2.5, -0.5}}))
//}
//
//func TestTree2_Insert_rotation(t *testing.T) {
// var bvh Tree[float64, AABB[Vec2[float64]], int]
// for i := 0; i < 5; i++ {
// bvh.Insert(AABB[Vec2[float64]]{
// Upper: Vec2[float64]{float64(i), float64(i)},
// Lower: Vec2[float64]{float64(0), float64(0)},
// }, i)
// }
//}
//
//func BenchmarkTree2_Insert_random(b *testing.B) {
// const size = 25
// // generate test cases
// aabbs := make([]AABB[Vec2[float64]], b.N)
// poses := make([]Vec2[float64], b.N)
// for i := range aabbs {
// poses[i] = Vec2[float64]{rand.Float64() * 1e4, rand.Float64() * 1e4}
// aabbs[i] = AABB[Vec2[float64]]{
// Upper: Vec2[float64]{poses[i][0] + size, poses[i][0] + size},
// Lower: Vec2[float64]{poses[i][0] - size, poses[i][0] - size},
// }
// }
// b.ResetTimer()
//
// var bvh Tree[float64, AABB[Vec2[float64]], any]
// for _, v := range aabbs {
// bvh.Insert(v, nil)
// }
// //for _, v := range poses {
// // bvh.FindVec(v, func(interface{}) {})
// //}
//}
//
//func BenchmarkTree2_Insert_sorted1(b *testing.B) {
// // generate test cases
// var bvh Tree[float64, AABB[Vec2[float64]], int]
// upper := Vec2[float64]{float64(b.N), float64(b.N)}
// for i := 0; i < b.N; i++ {
// bvh.Insert(AABB[Vec2[float64]]{
// Upper: upper,
// Lower: Vec2[float64]{float64(i), float64(i)},
// }, i)
// }
//}
//
//func BenchmarkTree2_Insert_sorted2(b *testing.B) {
// // generate test cases
// var bvh Tree[float64, AABB[Vec2[float64]], int]
// for i := 0; i < b.N; i++ {
// bvh.Insert(AABB[Vec2[float64]]{
// Upper: Vec2[float64]{float64(i), float64(i)},
// Lower: Vec2[float64]{0, 0},
// }, i)
// }
//}
//
//func BenchmarkTree2_Delete_random(b *testing.B) {
// const size = 25
// // generate test cases
// aabbs := make([]AABB[Vec2[float64]], b.N)
// poses := make([]Vec2[float64], b.N)
// nodes := make([]*Node[AABB[Vec2[float64]], any], b.N)
// for i := range aabbs {
// poses[i] = Vec2[float64]{rand.Float64() * 1e4, rand.Float64() * 1e4}
// aabbs[i] = AABB[Vec2[float64]]{
// Upper: Vec2[float64]{poses[i][0] + size, poses[i][0] + size},
// Lower: Vec2[float64]{poses[i][0] - size, poses[i][0] - size},
// }
// }
// b.ResetTimer()
//
// var bvh Tree[float64, AABB[Vec2[float64]], any]
// for i, v := range aabbs {
// nodes[i] = bvh.Insert(v, nil)
// }
//
// b.StopTimer()
// rand.Shuffle(b.N, func(i, j int) {
// nodes[i], nodes[j] = nodes[j], nodes[i]
// })
// b.StartTimer()
//
// for _, v := range nodes {
// bvh.Delete(v)
// }
//}

View File

@ -0,0 +1,56 @@
package bvh
import (
"golang.org/x/exp/constraints"
"math"
)
type Vec2[I constraints.Signed | constraints.Float] [2]I
func (v Vec2[I]) Add(other Vec2[I]) Vec2[I] { return Vec2[I]{v[0] + other[0], v[1] + other[1]} }
func (v Vec2[I]) Sub(other Vec2[I]) Vec2[I] { return Vec2[I]{v[0] - other[0], v[1] - other[1]} }
func (v Vec2[I]) Mul(i I) Vec2[I] { return Vec2[I]{v[0] * i, v[1] * i} }
func (v Vec2[I]) Max(other Vec2[I]) Vec2[I] { return Vec2[I]{max(v[0], other[0]), max(v[1], other[1])} }
func (v Vec2[I]) Min(other Vec2[I]) Vec2[I] { return Vec2[I]{min(v[0], other[0]), min(v[1], other[1])} }
func (v Vec2[I]) Less(other Vec2[I]) bool { return v[0] < other[0] && v[1] < other[1] }
func (v Vec2[I]) More(other Vec2[I]) bool { return v[0] > other[0] && v[1] > other[1] }
func (v Vec2[I]) Norm() float64 { return sqrt(v[0]*v[0] + v[1]*v[1]) }
func (v Vec2[I]) Sum() I { return v[0] + v[1] }
type Vec3[I constraints.Signed | constraints.Float] [3]I
func (v Vec3[I]) Add(other Vec3[I]) Vec3[I] {
return Vec3[I]{v[0] + other[0], v[1] + other[1], v[2] + other[2]}
}
func (v Vec3[I]) Sub(other Vec3[I]) Vec3[I] {
return Vec3[I]{v[0] - other[0], v[1] - other[1], v[2] - other[2]}
}
func (v Vec3[I]) Mul(i I) Vec3[I] { return Vec3[I]{v[0] * i, v[1] * i, v[2] * i} }
func (v Vec3[I]) Max(other Vec3[I]) Vec3[I] {
return Vec3[I]{max(v[0], other[0]), max(v[1], other[1]), max(v[2], other[2])}
}
func (v Vec3[I]) Min(other Vec3[I]) Vec3[I] {
return Vec3[I]{min(v[0], other[0]), min(v[1], other[1]), min(v[2], other[2])}
}
func (v Vec3[I]) Less(other Vec3[I]) bool { return v[0] < other[0] && v[1] < other[1] }
func (v Vec3[I]) More(other Vec3[I]) bool { return v[0] > other[0] && v[1] > other[1] }
func (v Vec3[I]) Norm() float64 { return sqrt(v[0]*v[0] + v[1]*v[1] + v[2]*v[2]) }
func (v Vec3[I]) Sum() I { return v[0] + v[1] }
func max[T constraints.Ordered](a, b T) T {
if a > b {
return a
}
return b
}
func min[T constraints.Ordered](a, b T) T {
if a < b {
return a
}
return b
}
func sqrt[T constraints.Signed | constraints.Float](v T) float64 {
return math.Sqrt(float64(v))
}