Improve CFB8 implementation (#256)
* Add CFB8 tests & benchmark * Improve CFB8 implementation * Cleanup code * Speed up with copy function * Even faster * Fix & more tests * Fix tests * Fix typo
This commit is contained in:
103
net/CFB8/cfb8.go
103
net/CFB8/cfb8.go
@ -1,51 +1,108 @@
|
||||
// Package CFB8 is copied from https://play.golang.org/p/LTbId4b6M2
|
||||
// Package CFB8 implements CFB8 block cipher mode of operation used by Minecraft protocol.
|
||||
package CFB8
|
||||
|
||||
import "crypto/cipher"
|
||||
import (
|
||||
"crypto/cipher"
|
||||
"unsafe"
|
||||
)
|
||||
|
||||
type CFB8 struct {
|
||||
c cipher.Block
|
||||
blockSize int
|
||||
iv, tmp []byte
|
||||
ivPos int
|
||||
iv []byte
|
||||
de bool
|
||||
}
|
||||
|
||||
func NewCFB8Decrypt(c cipher.Block, iv []byte) *CFB8 {
|
||||
cp := make([]byte, len(iv))
|
||||
copy(cp, iv)
|
||||
return &CFB8{
|
||||
c: c,
|
||||
blockSize: c.BlockSize(),
|
||||
iv: cp,
|
||||
tmp: make([]byte, c.BlockSize()),
|
||||
de: true,
|
||||
}
|
||||
return newCFB8(c, iv, true)
|
||||
}
|
||||
|
||||
func NewCFB8Encrypt(c cipher.Block, iv []byte) *CFB8 {
|
||||
cp := make([]byte, len(iv))
|
||||
return newCFB8(c, iv, false)
|
||||
}
|
||||
|
||||
func newCFB8(c cipher.Block, iv []byte, de bool) *CFB8 {
|
||||
cp := make([]byte, len(iv)*3)
|
||||
copy(cp, iv)
|
||||
return &CFB8{
|
||||
c: c,
|
||||
blockSize: c.BlockSize(),
|
||||
iv: cp,
|
||||
tmp: make([]byte, c.BlockSize()),
|
||||
de: false,
|
||||
de: de,
|
||||
}
|
||||
}
|
||||
|
||||
func (cf *CFB8) XORKeyStream(dst, src []byte) {
|
||||
for i := 0; i < len(src); i++ {
|
||||
val := src[i]
|
||||
copy(cf.tmp, cf.iv)
|
||||
cf.c.Encrypt(cf.iv, cf.iv)
|
||||
val = val ^ cf.iv[0]
|
||||
if len(dst) < len(src) {
|
||||
panic("cfb8: output smaller than input")
|
||||
}
|
||||
|
||||
copy(cf.iv, cf.tmp[1:])
|
||||
// If dst and src does not overlap in first block size,
|
||||
// and the length of src is greater than 2*blockSize,
|
||||
// we can use an optimized implementation.
|
||||
if len(src) > cf.blockSize<<1 &&
|
||||
(uintptr(unsafe.Pointer(&dst[0]))+uintptr(cf.blockSize) <= uintptr(unsafe.Pointer(&src[0])) ||
|
||||
uintptr(unsafe.Pointer(&src[0]))+uintptr(len(src)) <= uintptr(unsafe.Pointer(&dst[0]))) {
|
||||
// encrypt/decrypt first blockSize bytes
|
||||
// After this, the IV will come to the same as
|
||||
// the last blockSize of ciphertext, so
|
||||
// we can reuse them without copy.
|
||||
cf.XORKeyStream(dst, src[:cf.blockSize])
|
||||
var ciphertext []byte
|
||||
if cf.de {
|
||||
cf.iv[15] = src[i]
|
||||
ciphertext = src
|
||||
} else {
|
||||
cf.iv[15] = val
|
||||
ciphertext = dst
|
||||
}
|
||||
dst = dst[cf.blockSize:]
|
||||
src = src[cf.blockSize:]
|
||||
iv := cf.iv
|
||||
_ = iv[0] // bounds check hint to compiler; see golang.org/issue/14808
|
||||
var (
|
||||
i int
|
||||
val byte
|
||||
)
|
||||
for i, val = range src {
|
||||
cf.c.Encrypt(iv, ciphertext[i:])
|
||||
dst[i] = val ^ iv[0]
|
||||
}
|
||||
// copy the current IV for next operation
|
||||
copy(iv, ciphertext[i+1:i+1+cf.blockSize])
|
||||
cf.ivPos = 0
|
||||
return
|
||||
}
|
||||
|
||||
for i, val := range src {
|
||||
posPlusBlockSize := cf.ivPos + cf.blockSize
|
||||
// fast mod; 2*blockSize must be a non-negative integer power of 2
|
||||
tempPos := posPlusBlockSize & (cf.blockSize<<1 - 1)
|
||||
// reuse space to store encrypted block
|
||||
cf.c.Encrypt(cf.iv[tempPos:], cf.iv[cf.ivPos:])
|
||||
// Only the first byte of the encrypted block is used
|
||||
// for encryption/decryption, other bytes are ignored.
|
||||
val ^= cf.iv[tempPos]
|
||||
|
||||
if cf.ivPos == cf.blockSize<<1 {
|
||||
// bound reached; move to next round for next operation
|
||||
// copy next block to the start of the ring buffer
|
||||
copy(cf.iv, cf.iv[cf.ivPos+1:])
|
||||
// insert the encrypted byte to the end of IV
|
||||
if cf.de {
|
||||
cf.iv[cf.blockSize-1] = src[i]
|
||||
} else {
|
||||
cf.iv[cf.blockSize-1] = val
|
||||
}
|
||||
cf.ivPos = 0
|
||||
} else {
|
||||
// insert the encrypted byte to the end of IV
|
||||
if cf.de {
|
||||
cf.iv[posPlusBlockSize] = src[i]
|
||||
} else {
|
||||
cf.iv[posPlusBlockSize] = val
|
||||
}
|
||||
// move to next block
|
||||
cf.ivPos += 1
|
||||
}
|
||||
|
||||
dst[i] = val
|
||||
|
186
net/CFB8/cfb8_test.go
Normal file
186
net/CFB8/cfb8_test.go
Normal file
@ -0,0 +1,186 @@
|
||||
package CFB8
|
||||
|
||||
import (
|
||||
"bytes"
|
||||
"crypto/aes"
|
||||
"crypto/rand"
|
||||
"encoding/hex"
|
||||
"testing"
|
||||
)
|
||||
|
||||
// cfb8Tests contains the test vectors from
|
||||
// https://csrc.nist.gov/publications/nistpubs/800-38a/sp800-38a.pdf, section
|
||||
// F.3.7. Modified for Minecraft CFB8 tests.
|
||||
var cfb8Tests = []struct {
|
||||
key, iv, plaintext, ciphertext string
|
||||
}{
|
||||
{
|
||||
"2b7e151628aed2a6abf7158809cf4f3c",
|
||||
"000102030405060708090a0b0c0d0e0f",
|
||||
"6bc1bee22e409f96e93d7e117393172a",
|
||||
"3b79424c9c0dd436bace9e0ed4586a4f",
|
||||
},
|
||||
{
|
||||
"2b7e151628aed2a6abf7158809cf4f3c",
|
||||
"3B3FD92EB72DAD20333449F8E83CFB4A",
|
||||
"ae2d8a571e03ac9c9eb76fac45af8e51",
|
||||
"c8b0723943d71f61a2e5b0e8cedf87c8",
|
||||
},
|
||||
{
|
||||
"2b7e151628aed2a6abf7158809cf4f3c",
|
||||
"C8A64537A0B3A93FCDE3CDAD9F1CE58B",
|
||||
"30c81c46a35ce411e5fbc1191a0a52ef",
|
||||
"260d20e9395d3501067286d3a2a7002f",
|
||||
},
|
||||
{
|
||||
"2b7e151628aed2a6abf7158809cf4f3c",
|
||||
"26751F67A3CBB140B1808CF187A4F4DF",
|
||||
"f69f2445df4f9b17ad2b417be66c3710",
|
||||
"c0af633cd9c599309f924802af599ee6",
|
||||
},
|
||||
{
|
||||
"2b7e151628aed2a6abf7158809cf4f3c",
|
||||
"000102030405060708090a0b0c0d0e0f",
|
||||
"0ecbd6d36cd12962ce671b4d96fb95aaa902096aeac366e13a6ae57c05d48673cf320c626689d05548f65fd6a108630c1d4e3aab543b006823c7a9422e97c0431587537c384f99a11488ffd9b2e9b46f49005a7e5cef64e27e2de3cf3fb87c1524766601",
|
||||
"5efb6f6b93cf5f0e135a0c932f59f9aaa2276e4b06cd4f5edca4baba735ac7708dd7c0f9e92c6b89d2245b0d9a6356b0e98529cd45e56df22e914ef9e0792facaab707af90c13162bfad06a240eb6adcbf3365fd84a003f8083f4662a7a27232c72c6c0c",
|
||||
},
|
||||
}
|
||||
|
||||
func TestCFB8VectorsNonOverlapping(t *testing.T) {
|
||||
for i, test := range cfb8Tests {
|
||||
key, err := hex.DecodeString(test.key)
|
||||
if err != nil {
|
||||
t.Fatal(err)
|
||||
}
|
||||
iv, err := hex.DecodeString(test.iv)
|
||||
if err != nil {
|
||||
t.Fatal(err)
|
||||
}
|
||||
plaintext, err := hex.DecodeString(test.plaintext)
|
||||
if err != nil {
|
||||
t.Fatal(err)
|
||||
}
|
||||
expected, err := hex.DecodeString(test.ciphertext)
|
||||
if err != nil {
|
||||
t.Fatal(err)
|
||||
}
|
||||
|
||||
block, err := aes.NewCipher(key)
|
||||
if err != nil {
|
||||
t.Fatal(err)
|
||||
}
|
||||
|
||||
ciphertext := make([]byte, len(plaintext))
|
||||
cfb := NewCFB8Encrypt(block, iv)
|
||||
if len(plaintext) > 50 {
|
||||
cfb.XORKeyStream(ciphertext, plaintext[:len(plaintext)/2])
|
||||
cfb.XORKeyStream(ciphertext[len(plaintext)/2:], plaintext[len(plaintext)/2:])
|
||||
} else {
|
||||
cfb.XORKeyStream(ciphertext, plaintext)
|
||||
}
|
||||
|
||||
if !bytes.Equal(ciphertext, expected) {
|
||||
t.Errorf("#%d: wrong output: got %x, expected %x", i, ciphertext, expected)
|
||||
}
|
||||
|
||||
cfbdec := NewCFB8Decrypt(block, iv)
|
||||
plaintextCopy := make([]byte, len(ciphertext))
|
||||
if len(ciphertext) > 50 {
|
||||
cfbdec.XORKeyStream(plaintextCopy, ciphertext[:len(ciphertext)/2])
|
||||
cfbdec.XORKeyStream(plaintextCopy[len(ciphertext)/2:], ciphertext[len(ciphertext)/2:])
|
||||
} else {
|
||||
cfbdec.XORKeyStream(plaintextCopy, ciphertext)
|
||||
}
|
||||
|
||||
if !bytes.Equal(plaintextCopy, plaintext) {
|
||||
t.Errorf("#%d: wrong plaintext: got %x, expected %x", i, plaintextCopy, plaintext)
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
func TestCFB8VectorsOverlapped(t *testing.T) {
|
||||
for i, test := range cfb8Tests {
|
||||
key, err := hex.DecodeString(test.key)
|
||||
if err != nil {
|
||||
t.Fatal(err)
|
||||
}
|
||||
iv, err := hex.DecodeString(test.iv)
|
||||
if err != nil {
|
||||
t.Fatal(err)
|
||||
}
|
||||
plaintext, err := hex.DecodeString(test.plaintext)
|
||||
if err != nil {
|
||||
t.Fatal(err)
|
||||
}
|
||||
expected, err := hex.DecodeString(test.ciphertext)
|
||||
if err != nil {
|
||||
t.Fatal(err)
|
||||
}
|
||||
|
||||
block, err := aes.NewCipher(key)
|
||||
if err != nil {
|
||||
t.Fatal(err)
|
||||
}
|
||||
|
||||
buf := make([]byte, len(plaintext))
|
||||
copy(buf, plaintext)
|
||||
cfb := NewCFB8Encrypt(block, iv)
|
||||
if len(buf) > 50 {
|
||||
cfb.XORKeyStream(buf, buf[:len(buf)/2])
|
||||
cfb.XORKeyStream(buf[len(buf)/2:], buf[len(buf)/2:])
|
||||
} else {
|
||||
cfb.XORKeyStream(buf, buf)
|
||||
}
|
||||
|
||||
if !bytes.Equal(buf, expected) {
|
||||
t.Errorf("#%d: wrong output: got %x, expected %x", i, buf, expected)
|
||||
}
|
||||
|
||||
cfbdec := NewCFB8Decrypt(block, iv)
|
||||
if len(buf) > 50 {
|
||||
cfbdec.XORKeyStream(buf, buf[:len(buf)/2])
|
||||
cfbdec.XORKeyStream(buf[len(buf)/2:], buf[len(buf)/2:])
|
||||
} else {
|
||||
cfbdec.XORKeyStream(buf, buf)
|
||||
}
|
||||
|
||||
if !bytes.Equal(buf, plaintext) {
|
||||
t.Errorf("#%d: wrong plaintext: got %x, expected %x", i, buf, plaintext)
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
func BenchmarkCFB8AES1KOverlapped(b *testing.B) {
|
||||
var key [16]byte
|
||||
var iv [16]byte
|
||||
rand.Read(key[:])
|
||||
rand.Read(iv[:])
|
||||
buf := make([]byte, 1024)
|
||||
aes, _ := aes.NewCipher(key[:])
|
||||
stream := NewCFB8Encrypt(aes, iv[:])
|
||||
|
||||
b.SetBytes(int64(len(buf)))
|
||||
b.ReportAllocs()
|
||||
b.ResetTimer()
|
||||
for i := 0; i < b.N; i++ {
|
||||
stream.XORKeyStream(buf, buf)
|
||||
}
|
||||
}
|
||||
|
||||
func BenchmarkCFB8AES1KNonOverlapping(b *testing.B) {
|
||||
var key [16]byte
|
||||
var iv [16]byte
|
||||
rand.Read(key[:])
|
||||
rand.Read(iv[:])
|
||||
buf := make([]byte, 1024)
|
||||
buf2 := make([]byte, 1024)
|
||||
aes, _ := aes.NewCipher(key[:])
|
||||
stream := NewCFB8Encrypt(aes, iv[:])
|
||||
|
||||
b.SetBytes(int64(len(buf)))
|
||||
b.ReportAllocs()
|
||||
b.ResetTimer()
|
||||
for i := 0; i < b.N; i++ {
|
||||
stream.XORKeyStream(buf2, buf)
|
||||
}
|
||||
}
|
Reference in New Issue
Block a user