Anonymous field handling for NBT

This commit is contained in:
Tnze
2023-04-26 21:51:41 +08:00
parent 9582bc2a7e
commit 078aaba156
8 changed files with 377 additions and 72 deletions

View File

@ -6,7 +6,7 @@ The API is very similar to the standard library `encoding/json`.
(But fix some its problem)
If you (high probability) have used that, it is easy to use this.
## Supported Struct Tags
## Supported Struct Tags and Options
- `nbt` - The primary tag name. See below.
- `nbtkey` - The key name of the field (Used to support commas `,` in tag names)
@ -49,7 +49,7 @@ type MyStruct struct {
}
```
### The `nbtkey`
### The `nbtkey` tag
Common issue with JSON standard libraries: inability to specify keys containing commas for structures.
(e.g `{"a,b" : "c"}`)

View File

@ -8,6 +8,7 @@ import (
"io"
"math"
"reflect"
"strings"
)
// Unmarshal decode binary NBT data and fill into v
@ -351,11 +352,19 @@ func (d *Decoder) unmarshal(val reflect.Value, tagType byte) error {
}
case TagCompound:
u, ut, val, assign := indirect(val, false)
if assign != nil {
defer assign()
}
if u != nil {
return u.UnmarshalNBT(tagType, d.r)
}
if ut != nil {
return errors.New("cannot decode TagCompound as string")
}
switch vk := val.Kind(); vk {
default:
return errors.New("cannot parse TagCompound as " + vk.String())
case reflect.Struct:
tinfo := typeFields(val.Type())
fields := cachedTypeFields(val.Type())
for {
tt, tn, err := d.readTag()
if err != nil {
@ -364,9 +373,37 @@ func (d *Decoder) unmarshal(val reflect.Value, tagType byte) error {
if tt == TagEnd {
break
}
field := tinfo.findIndexByName(tn)
if field != -1 {
err = d.unmarshal(val.Field(field), tt)
var f *field
if i, ok := fields.nameIndex[tn]; ok {
f = &fields.list[i]
} else {
// Fall back to linear search.
for i := range fields.list {
ff := &fields.list[i]
if strings.EqualFold(ff.name, tn) {
f = ff
break
}
}
}
if f != nil {
val := val
for _, i := range f.index {
if val.Kind() == reflect.Pointer {
if val.IsNil() {
// If a struct embeds a pointer to an unexported type,
// it is not possible to set a newly allocated value
// since the field is unexported.
if !val.CanSet() {
return fmt.Errorf("cannot set embedded pointer to unexported struct: %v", val.Type().Elem())
}
val.Set(reflect.New(val.Type().Elem()))
}
val = val.Elem()
}
val = val.Field(i)
}
err = d.unmarshal(val, tt)
if err != nil {
return fmt.Errorf("fail to decode tag %q: %w", tn, err)
}
@ -377,11 +414,12 @@ func (d *Decoder) unmarshal(val reflect.Value, tagType byte) error {
}
}
case reflect.Map:
if val.Type().Key().Kind() != reflect.String {
vt := val.Type()
if vt.Key().Kind() != reflect.String {
return errors.New("cannot parse TagCompound as " + val.Type().String())
}
if val.IsNil() {
val.Set(reflect.MakeMap(val.Type()))
val.Set(reflect.MakeMap(vt))
}
for {
tt, tn, err := d.readTag()
@ -414,6 +452,8 @@ func (d *Decoder) unmarshal(val reflect.Value, tagType byte) error {
buf[tn] = value
}
val.Set(reflect.ValueOf(buf))
default:
return errors.New("cannot parse TagCompound as " + vk.String())
}
}

View File

@ -466,7 +466,7 @@ func TestDecoder_Decode_ErrorUnknownField(t *testing.T) {
func TestDecoder_Decode_keysWithComma(t *testing.T) {
data := []byte{
TagCompound, 0, 1, 'S',
TagString, 0, 1, 'T',
TagString, 0, 1, 't',
0, 4, 'T', 'n', 'z', 'e',
TagEnd,
}

View File

@ -181,9 +181,22 @@ func (e *Encoder) writeValue(val reflect.Value, tagType byte) error {
switch val.Kind() {
case reflect.Struct:
fields := typeFields(val.Type())
for _, t := range fields.fields {
v := val.Field(t.index)
fields := cachedTypeFields(val.Type())
FieldLoop:
for i := range fields.list {
t := &fields.list[i]
v := val
for _, i := range t.index {
if v.Kind() == reflect.Pointer {
if v.IsNil() {
continue FieldLoop
}
v = v.Elem()
}
v = v.Field(i)
}
if t.omitEmpty && isEmptyValue(v) {
continue
}
@ -192,7 +205,7 @@ func (e *Encoder) writeValue(val reflect.Value, tagType byte) error {
return fmt.Errorf("encode %q error: unsupport type %v", t.name, v.Type())
}
if t.list {
if t.asList {
switch typ {
case TagByteArray, TagIntArray, TagLongArray:
typ = TagList // override the parsed type

View File

@ -10,3 +10,16 @@ type Marshaler interface {
TagType() byte
MarshalNBT(w io.Writer) error
}
// FieldsUnmarshaler is a type can hold many Tags just like a TagCompound.
//
// If and only if a type which implements this interface is used as an anonymous field of a struct,
// and didn't set a struct tag, the content it holds will be considered as in the outer struct.
type FieldsUnmarshaler interface {
UnmarshalField(tagType byte, tagName string, r DecoderReader) (ok bool, err error)
}
// FieldsMarshaler is similar to FieldsUnmarshaler, but for marshaling.
type FieldsMarshaler interface {
MarshalFields(w io.Writer) (ok bool, err error)
}

View File

@ -20,7 +20,7 @@ const (
// These values are stored in the parseState stack.
// They give the current state of a composite value
// being scanned. If the parser is inside a nested value
// being scanned. If the parser is inside a nested value,
// the parseState describes the nested state, outermost at entry 0.
const (
parseCompoundName = iota // parsing tag name (before colon)

82
nbt/special_test.go Normal file
View File

@ -0,0 +1,82 @@
package nbt_test
import (
"fmt"
"testing"
"github.com/Tnze/go-mc/nbt"
)
func ExampleMarshal_anonymousStructField() {
type A struct{ F string }
type B struct{ E string }
type S struct {
A // anonymous fields are usually marshaled as if their inner exported fields were fields in the outer struct
B `nbt:"B"` // anonymous field, but with an explicit tag name specified
}
var val S
val.F = "Tnze"
val.E = "GoMC"
data, err := nbt.Marshal(val)
if err != nil {
panic(err)
}
var snbt nbt.StringifiedMessage
if err := nbt.Unmarshal(data, &snbt); err != nil {
panic(err)
}
fmt.Println(snbt)
// Output:
// {F:Tnze,B:{E:GoMC}}
}
func ExampleUnmarshal_anonymousStructField() {
type A struct{ F string }
type B struct{ E string }
type S struct {
A // anonymous fields are usually marshaled as if their inner exported fields were fields in the outer struct
B `nbt:"B"` // anonymous field, but with an explicit tag name specified
}
data, err := nbt.Marshal(nbt.StringifiedMessage(`{F:Tnze,B:{E:GoMC}}`))
if err != nil {
panic(err)
}
var val S
if err := nbt.Unmarshal(data, &val); err != nil {
panic(err)
}
fmt.Println(val.F)
fmt.Println(val.E)
// Output:
// Tnze
// GoMC
}
func TestMarshal_anonymousPointerNesting(t *testing.T) {
type A struct{ T string }
type B struct{ *A }
type C struct{ B }
val := C{B{&A{"Tnze"}}}
data, err := nbt.Marshal(val)
if err != nil {
panic(err)
}
var snbt nbt.StringifiedMessage
if err := nbt.Unmarshal(data, &snbt); err != nil {
panic(err)
}
want := `{T:Tnze}`
if string(snbt) != want {
t.Errorf("Marshal nesting anonymous struct error, got %q, want %q", snbt, want)
}
}

View File

@ -2,84 +2,241 @@ package nbt
import (
"reflect"
"sort"
"strings"
"sync"
)
type typeInfo struct {
fields []structField
nameToIndex map[string]int // index of the field in struct, not previous slice
type structFields struct {
list []field
nameIndex map[string]int // index of the previous slice.
}
type structField struct {
name string
index int
type field struct {
name string
tag bool
index []int
typ reflect.Type
omitEmpty bool
list bool
asList bool
}
var tInfoMap sync.Map
// byIndex sorts field by index sequence.
type byIndex []field
func typeFields(typ reflect.Type) *typeInfo {
if ti, ok := tInfoMap.Load(typ); ok {
return ti.(*typeInfo)
func (x byIndex) Len() int { return len(x) }
func (x byIndex) Swap(i, j int) { x[i], x[j] = x[j], x[i] }
func (x byIndex) Less(i, j int) bool {
for k, xik := range x[i].index {
if k >= len(x[j].index) {
return false
}
if xik != x[j].index[k] {
return xik < x[j].index[k]
}
}
return len(x[i].index) < len(x[j].index)
}
tInfo := new(typeInfo)
tInfo.nameToIndex = make(map[string]int)
if typ.Kind() == reflect.Struct {
n := typ.NumField()
tInfo.fields = make([]structField, 0, n)
for i := 0; i < n; i++ {
f := typ.Field(i)
tag := f.Tag.Get("nbt")
if (f.PkgPath != "" && !f.Anonymous) || tag == "-" {
continue // Private field
func typeFields(t reflect.Type) (tInfo structFields) {
// Anonymous fields to explore at the current level and the next.
current := []field{}
next := []field{{typ: t}}
// Count of queued names for current level and the next.
var count, nextCount map[reflect.Type]int
// Types already visited at an earlier level.
visited := make(map[reflect.Type]struct{})
// Fields found.
var fields []field
for len(next) > 0 {
current, next = next, current[:0]
count, nextCount = nextCount, make(map[reflect.Type]int)
for _, f := range current {
if _, ok := visited[f.typ]; ok {
continue
}
visited[f.typ] = struct{}{}
// parse tags
var field structField
name, opts, _ := strings.Cut(tag, ",")
if keytag := f.Tag.Get("nbtkey"); keytag != "" {
name = keytag
} else if name == "" {
name = f.Name
}
field.name = name
field.index = i
// parse options
for opts != "" {
var name string
name, opts, _ = strings.Cut(opts, ",")
switch name {
case "omitempty":
field.omitEmpty = true
case "list":
field.list = true
// Scan f.typ for fields to include.
for i := 0; i < f.typ.NumField(); i++ {
sf := f.typ.Field(i)
if sf.Anonymous {
t := sf.Type
if t.Kind() == reflect.Pointer {
t = t.Elem()
}
if !sf.IsExported() && t.Kind() != reflect.Struct {
// Ignore embedded fields of unexported non-struct types.
continue
}
// Do not ignore embedded fields of unexported struct types
// since they may have exported fields.
} else if !sf.IsExported() {
// Ignore unexported non-embedded fields.
continue
}
}
if f.Tag.Get("nbt_type") == "list" {
field.list = true
}
tInfo.fields = append(tInfo.fields, field)
tInfo.nameToIndex[field.name] = i
if _, ok := tInfo.nameToIndex[f.Name]; !ok {
tInfo.nameToIndex[f.Name] = i
tag := sf.Tag.Get("nbt")
if tag == "-" {
continue
}
// parse tags
name, opts, _ := strings.Cut(tag, ",")
index := make([]int, len(f.index)+1)
copy(index, f.index)
index[len(f.index)] = i
if keytag := sf.Tag.Get("nbtkey"); keytag != "" {
name = keytag
}
ft := sf.Type
if ft.Name() == "" && ft.Kind() == reflect.Pointer {
// Follow pointer.
ft = ft.Elem()
}
// parse options
var omitEmpty, asList bool
for opts != "" {
var name string
name, opts, _ = strings.Cut(opts, ",")
switch name {
case "omitempty":
omitEmpty = true
case "list":
asList = true
}
}
// Deprecated: use `nbt:",list"` instead.
if sf.Tag.Get("nbt_type") == "list" {
asList = true
}
// Record found field and index sequence.
if name != "" || !sf.Anonymous || ft.Kind() != reflect.Struct {
tagged := name != ""
if name == "" {
name = sf.Name
}
field := field{
name: name,
tag: tagged,
index: index,
typ: ft,
omitEmpty: omitEmpty,
asList: asList,
}
fields = append(fields, field)
if count[f.typ] > 1 {
// If there were multiple instances, add a second,
// so that the annihilation code will see a duplicate.
// It only cares about the distinction between 1 or 2,
// so don't bother generating any more copies.
fields = append(fields, fields[len(fields)-1])
}
continue
}
// Record new anonymous struct to explore in next round.
nextCount[ft]++
if nextCount[ft] == 1 {
next = append(next, field{name: ft.Name(), index: index, typ: ft})
}
}
}
}
ti, _ := tInfoMap.LoadOrStore(typ, tInfo)
return ti.(*typeInfo)
sort.Slice(fields, func(i, j int) bool {
x := fields
// sort field by name, breaking ties with depth, then
// breaking ties with "name came from json tag", then
// breaking ties with index sequence.
if x[i].name != x[j].name {
return x[i].name < x[j].name
}
if len(x[i].index) != len(x[j].index) {
return len(x[i].index) < len(x[j].index)
}
if x[i].tag != x[j].tag {
return x[i].tag
}
return byIndex(x).Less(i, j)
})
// Delete all fields that are hidden by the Go rules for embedded fields,
// except that fields with JSON tags are promoted.
// The fields are sorted in primary order of name, secondary order
// of field index length. Loop over names; for each name, delete
// hidden fields by choosing the one dominant field that survives.
out := fields[:0]
for advance, i := 0, 0; i < len(fields); i += advance {
// One iteration per name.
// Find the sequence of fields with the name of this first field.
fi := fields[i]
name := fi.name
for advance = 1; i+advance < len(fields); advance++ {
fj := fields[i+advance]
if fj.name != name {
break
}
}
if advance == 1 { // Only one field with this name
out = append(out, fi)
continue
}
dominant, ok := dominantField(fields[i : i+advance])
if ok {
out = append(out, dominant)
}
}
fields = out
sort.Sort(byIndex(fields))
nameIndex := make(map[string]int, len(fields))
for i, field := range fields {
nameIndex[field.name] = i
}
return structFields{
list: fields,
nameIndex: nameIndex,
}
}
func (t *typeInfo) findIndexByName(name string) int {
i, ok := t.nameToIndex[name]
if !ok {
return -1
// dominantField looks through the fields, all of which are known to
// have the same name, to find the single field that dominates the
// others using Go's embedding rules, modified by the presence of
// NBT tags. If there are multiple top-level fields, the boolean
// will be false: This condition is an error in Go and we skip all
// the fields.
func dominantField(fields []field) (field, bool) {
// The fields are sorted in increasing index-length order, then by presence of tag.
// That means that the first field is the dominant one. We need only check
// for error cases: two fields at top level, either both tagged or neither tagged.
if len(fields) > 1 && len(fields[0].index) == len(fields[1].index) && fields[0].tag == fields[1].tag {
return field{}, false
}
return i
return fields[0], true
}
var fieldCache sync.Map
func cachedTypeFields(t reflect.Type) structFields {
if ti, ok := fieldCache.Load(t); ok {
return ti.(structFields)
}
tInfo := typeFields(t)
ti, _ := fieldCache.LoadOrStore(t, tInfo)
return ti.(structFields)
}