Files
go-mc/nbt/typeinfo.go
2023-04-26 23:17:49 +08:00

243 lines
6.1 KiB
Go

package nbt
import (
"reflect"
"sort"
"strings"
"sync"
)
type structFields struct {
list []field
nameIndex map[string]int // index of the previous slice.
}
type field struct {
name string
tag bool
index []int
typ reflect.Type
omitEmpty bool
asList bool
}
// byIndex sorts field by index sequence.
type byIndex []field
func (x byIndex) Len() int { return len(x) }
func (x byIndex) Swap(i, j int) { x[i], x[j] = x[j], x[i] }
func (x byIndex) Less(i, j int) bool {
for k, xik := range x[i].index {
if k >= len(x[j].index) {
return false
}
if xik != x[j].index[k] {
return xik < x[j].index[k]
}
}
return len(x[i].index) < len(x[j].index)
}
func typeFields(t reflect.Type) (tInfo structFields) {
// Anonymous fields to explore at the current level and the next.
current := []field{}
next := []field{{typ: t}}
// Count of queued names for current level and the next.
var count, nextCount map[reflect.Type]int
// Types already visited at an earlier level.
visited := make(map[reflect.Type]struct{})
// Fields found.
var fields []field
for len(next) > 0 {
current, next = next, current[:0]
count, nextCount = nextCount, make(map[reflect.Type]int)
for _, f := range current {
if _, ok := visited[f.typ]; ok {
continue
}
visited[f.typ] = struct{}{}
// Scan f.typ for fields to include.
for i := 0; i < f.typ.NumField(); i++ {
sf := f.typ.Field(i)
if sf.Anonymous {
t := sf.Type
if t.Kind() == reflect.Pointer {
t = t.Elem()
}
if !sf.IsExported() && t.Kind() != reflect.Struct {
// Ignore embedded fields of unexported non-struct types.
continue
}
// Do not ignore embedded fields of unexported struct types
// since they may have exported fields.
} else if !sf.IsExported() {
// Ignore unexported non-embedded fields.
continue
}
tag := sf.Tag.Get("nbt")
if tag == "-" {
continue
}
// parse tags
name, opts, _ := strings.Cut(tag, ",")
index := make([]int, len(f.index)+1)
copy(index, f.index)
index[len(f.index)] = i
if keytag := sf.Tag.Get("nbtkey"); keytag != "" {
name = keytag
}
ft := sf.Type
if ft.Name() == "" && ft.Kind() == reflect.Pointer {
// Follow pointer.
ft = ft.Elem()
}
// parse options
var omitEmpty, asList bool
for opts != "" {
var name string
name, opts, _ = strings.Cut(opts, ",")
switch name {
case "omitempty":
omitEmpty = true
case "list":
asList = true
}
}
// Deprecated: use `nbt:",list"` instead.
if sf.Tag.Get("nbt_type") == "list" {
asList = true
}
// Record found field and index sequence.
if name != "" || !sf.Anonymous || ft.Kind() != reflect.Struct {
tagged := name != ""
if name == "" {
name = sf.Name
}
field := field{
name: name,
tag: tagged,
index: index,
typ: ft,
omitEmpty: omitEmpty,
asList: asList,
}
fields = append(fields, field)
if count[f.typ] > 1 {
// If there were multiple instances, add a second,
// so that the annihilation code will see a duplicate.
// It only cares about the distinction between 1 or 2,
// so don't bother generating any more copies.
fields = append(fields, fields[len(fields)-1])
}
continue
}
// Record new anonymous struct to explore in next round.
nextCount[ft]++
if nextCount[ft] == 1 {
next = append(next, field{name: ft.Name(), index: index, typ: ft})
}
}
}
}
sort.Slice(fields, func(i, j int) bool {
x := fields
// sort field by name, breaking ties with depth, then
// breaking ties with "name came from json tag", then
// breaking ties with index sequence.
if x[i].name != x[j].name {
return x[i].name < x[j].name
}
if len(x[i].index) != len(x[j].index) {
return len(x[i].index) < len(x[j].index)
}
if x[i].tag != x[j].tag {
return x[i].tag
}
return byIndex(x).Less(i, j)
})
// Delete all fields that are hidden by the Go rules for embedded fields,
// except that fields with JSON tags are promoted.
// The fields are sorted in primary order of name, secondary order
// of field index length. Loop over names; for each name, delete
// hidden fields by choosing the one dominant field that survives.
out := fields[:0]
for advance, i := 0, 0; i < len(fields); i += advance {
// One iteration per name.
// Find the sequence of fields with the name of this first field.
fi := fields[i]
name := fi.name
for advance = 1; i+advance < len(fields); advance++ {
fj := fields[i+advance]
if fj.name != name {
break
}
}
if advance == 1 { // Only one field with this name
out = append(out, fi)
continue
}
dominant, ok := dominantField(fields[i : i+advance])
if ok {
out = append(out, dominant)
}
}
fields = out
sort.Sort(byIndex(fields))
nameIndex := make(map[string]int, len(fields))
for i, field := range fields {
nameIndex[field.name] = i
}
return structFields{
list: fields,
nameIndex: nameIndex,
}
}
// dominantField looks through the fields, all of which are known to
// have the same name, to find the single field that dominates the
// others using Go's embedding rules, modified by the presence of
// NBT tags. If there are multiple top-level fields, the boolean
// will be false: This condition is an error in Go and we skip all
// the fields.
func dominantField(fields []field) (field, bool) {
// The fields are sorted in increasing index-length order, then by presence of tag.
// That means that the first field is the dominant one. We need only check
// for error cases: two fields at top level, either both tagged or neither tagged.
if len(fields) > 1 && len(fields[0].index) == len(fields[1].index) && fields[0].tag == fields[1].tag {
return field{}, false
}
return fields[0], true
}
var fieldCache sync.Map
func cachedTypeFields(t reflect.Type) structFields {
if ti, ok := fieldCache.Load(t); ok {
return ti.(structFields)
}
tInfo := typeFields(t)
ti, _ := fieldCache.LoadOrStore(t, tInfo)
return ti.(structFields)
}