AABB and Sphere Bounds with new BVH tree implement with go 1.18 generic

This commit is contained in:
Tnze
2022-03-18 11:10:55 +08:00
parent ed742efb97
commit 00de623cc2
7 changed files with 513 additions and 263 deletions

View File

@ -1,158 +1,211 @@
package bvh
import (
"container/heap"
"math"
)
type Vec2 [2]float64
func (v Vec2) Add(other Vec2) Vec2 { return Vec2{v[0] + other[0], v[1] + other[1]} }
func (v Vec2) Sub(other Vec2) Vec2 { return Vec2{v[0] - other[0], v[1] - other[1]} }
func (v Vec2) Max(other Vec2) Vec2 { return Vec2{math.Max(v[0], other[0]), math.Max(v[1], other[1])} }
func (v Vec2) Min(other Vec2) Vec2 { return Vec2{math.Min(v[0], other[0]), math.Min(v[1], other[1])} }
type AABB2 struct{ Upper, Lower Vec2 }
func (aabb AABB2) WithIn(point Vec2) bool {
return aabb.Lower[0] < point[0] && point[0] < aabb.Upper[0] &&
aabb.Lower[1] < point[1] && point[1] < aabb.Upper[1]
}
func (aabb AABB2) Union(other AABB2) AABB2 {
return AABB2{
Upper: aabb.Upper.Max(other.Upper),
Lower: aabb.Lower.Min(other.Lower),
}
}
func (aabb AABB2) Surface() float64 {
d := aabb.Upper.Sub(aabb.Lower)
return 2 * (d[0] + d[1])
}
type Node2 struct {
box AABB2
Value interface{}
parent *Node2
children [2]*Node2
isLeaf bool
}
func (n *Node2) findAnotherChild(not *Node2) *Node2 {
if n.isLeaf {
return nil
} else if n.children[0] == not {
return n.children[1]
} else if n.children[1] == not {
return n.children[0]
}
panic("unreachable, please make sure the 'not' is the n's child")
}
type Tree2 struct {
root *Node2
}
func (t *Tree2) Insert(leaf AABB2) (n *Node2) {
n = &Node2{
box: leaf,
parent: nil,
children: [2]*Node2{},
isLeaf: true,
}
if t.root == nil {
t.root = n
return
}
// Stage 1: find the best sibling for the new leaf
sibling := t.root
bestCost := t.root.box.Union(leaf).Surface()
parentTo := &t.root // the parent's children pointer which point to the sibling
queue := searchHeap{searchItem{pointer: t.root, parentTo: &t.root}}
leafCost := leaf.Surface()
for len(queue) > 0 {
p := heap.Pop(&queue).(searchItem)
// determine if node p has the best cost
mergeSurface := p.pointer.box.Union(leaf).Surface()
deltaCost := mergeSurface - p.pointer.box.Surface()
cost := p.inheritedCost + mergeSurface
if cost < bestCost {
bestCost = cost
sibling = p.pointer
parentTo = p.parentTo
}
// determine if it is worthwhile to explore the children of node p.
inheritedCost := p.inheritedCost + deltaCost // lower bound
if inheritedCost+leafCost < bestCost {
if p.pointer.children[0] != nil {
heap.Push(&queue, searchItem{
pointer: p.pointer.children[0],
parentTo: &p.pointer.children[0],
inheritedCost: inheritedCost,
})
}
if p.pointer.children[1] != nil {
heap.Push(&queue, searchItem{
pointer: p.pointer.children[1],
parentTo: &p.pointer.children[1],
inheritedCost: inheritedCost,
})
}
}
}
// Stage 2: create a new parent
*parentTo = &Node2{
box: sibling.box.Union(leaf), // we will calculate in Stage3
parent: sibling.parent,
children: [2]*Node2{sibling, n},
isLeaf: false,
}
n.parent = *parentTo
sibling.parent = *parentTo
// Stage 3: walk back up the tree refitting AABBs
for p := *parentTo; p.parent != nil; p = p.parent {
p.box = p.children[0].box.Union(p.children[1].box)
//TODO: t.rotate(p)
}
return
}
func (t *Tree2) Find(point Vec2, f func(*Node2)) {
t.root.lookup(point, f)
}
func (n *Node2) lookup(point Vec2, f func(node2 *Node2)) {
if n == nil || !n.box.WithIn(point) {
return
}
if n.isLeaf {
f(n)
} else {
n.children[0].lookup(point, f)
n.children[1].lookup(point, f)
}
}
type searchHeap []searchItem
type searchItem struct {
pointer *Node2
parentTo **Node2
inheritedCost float64
}
func (h searchHeap) Len() int { return len(h) }
func (h searchHeap) Less(i, j int) bool { return h[i].inheritedCost < h[j].inheritedCost }
func (h searchHeap) Swap(i, j int) { h[i], h[j] = h[j], h[i] }
func (h *searchHeap) Push(x interface{}) { *h = append(*h, x.(searchItem)) }
func (h *searchHeap) Pop() interface{} {
old := *h
n := len(old)
x := old[n-1]
*h = old[0 : n-1]
return x
}
//
//import (
// "container/heap"
// "fmt"
// "golang.org/x/exp/constraints"
//)
//
//type Node[Vec constraints.Signed | constraints.Float, B interface {
// WithIn(Vec) bool
// Union(B) B
// Surface() float64
//}, V any] struct {
// box B
// Value V
// parent *Node[Vec, B, V]
// children [2]*Node[Vec, B, V]
// isLeaf bool
//}
//
//func (n *Node[Vec, B, V]) findAnotherChild(not *Node[Vec, B, V]) *Node[Vec, B, V] {
// if n.children[0] == not {
// return n.children[1]
// } else if n.children[1] == not {
// return n.children[0]
// }
// panic("unreachable, please make sure the 'not' is the n's child")
//}
//
//func (n *Node[Vec, B, V]) findChildPointer(child *Node[Vec, B, V]) **Node[Vec, B, V] {
// if n.children[0] == child {
// return &n.children[0]
// } else if n.children[1] == child {
// return &n.children[1]
// }
// panic("unreachable, please make sure the 'not' is the n's child")
//}
//
//type Tree[I constraints.Signed | constraints.Float, B interface {
// Union(B) B
// Surface() I
//}, V any] struct {
// root *Node[I, B, V]
//}
//
//func (t *Tree[Vec, B, V]) Insert(leaf B, value V) (n *Node[Vec, B, V]) {
// n = &Node[Vec, B, V]{
// box: leaf,
// Value: value,
// parent: nil,
// children: [2]*Node[Vec, B, V]{},
// isLeaf: true,
// }
// if t.root == nil {
// t.root = n
// return
// }
//
// // Stage 1: find the best sibling for the new leaf
// sibling := t.root
// bestCost := t.root.box.Union(leaf).Surface()
// parentTo := &t.root // the parent's children pointer which point to the sibling
// queue := searchHeap[Node[Vec, B, V]]{searchItem[Node[Vec, B, V]]{pointer: t.root, parentTo: &t.root}}
//
// leafCost := leaf.Surface()
// for queue.Len() > 0 {
// p := heap.Pop(&queue).(searchItem[Node[Vec, B, V]])
// // determine if node p has the best cost
// mergeSurface := p.pointer.box.Union(leaf).Surface()
// deltaCost := mergeSurface - p.pointer.box.Surface()
// cost := p.inheritedCost + mergeSurface
// if cost <= bestCost {
// bestCost = cost
// sibling = p.pointer
// parentTo = p.parentTo
// }
// // determine if it is worthwhile to explore the children of node p.
// inheritedCost := p.inheritedCost + deltaCost // lower bound
// if !p.pointer.isLeaf && inheritedCost+leafCost < bestCost {
// heap.Push(&queue, searchItem[Node[Vec, B, V]]{
// pointer: p.pointer.children[0],
// parentTo: &p.pointer.children[0],
// inheritedCost: inheritedCost,
// })
// heap.Push(&queue, searchItem[Node[Vec, B, V]]{
// pointer: p.pointer.children[1],
// parentTo: &p.pointer.children[1],
// inheritedCost: inheritedCost,
// })
// }
// }
//
// // Stage 2: create a new parent
// *parentTo = &Node[Vec, B, V]{
// box: sibling.box.Union(leaf), // we will calculate in Stage3
// parent: sibling.parent,
// children: [2]*Node[Vec, B, V]{sibling, n},
// isLeaf: false,
// }
// n.parent = *parentTo
// sibling.parent = *parentTo
//
// // Stage 3: walk back up the tree refitting AABBs
// for p := *parentTo; p != nil; p = p.parent {
// p.box = p.children[0].box.Union(p.children[1].box)
// t.rotate(p)
// }
// return
//}
//
//func (t *Tree[Vec, B, V]) Delete(n *Node[Vec, B, V]) interface{} {
// if n.parent == nil {
// // n is the root
// t.root = nil
// return n.Value
// }
// sibling := n.parent.findAnotherChild(n)
// grand := n.parent.parent
// if grand == nil {
// // n's parent is root
// t.root = sibling
// sibling.parent = nil
// } else {
// p := grand.findChildPointer(n.parent)
// *p = sibling
// sibling.parent = grand
// for p := sibling.parent; p.parent != nil; p = p.parent {
// p.box = p.children[0].box.Union(p.children[1].box)
// t.rotate(p)
// }
// }
// return n.Value
//}
//
//func (t *Tree[Vec, B, V]) rotate(n *Node[Vec, B, V]) {
// if n.isLeaf || n.parent == nil {
// return
// }
// // trying to swap n's sibling and children
// sibling := n.parent.findAnotherChild(n)
// current := n.box.Surface()
// if n.children[1].box.Union(sibling.box).Surface() < current {
// // swap n.children[0] and sibling
// n.parent.children, n.children, n.children[0].parent, sibling.parent = [2]*Node[Vec, B, V]{n, n.children[0]}, [2]*Node[Vec, B, V]{sibling, n.children[1]}, n.parent, n
// n.box = n.children[0].box.Union(n.children[1].box)
// } else if n.children[0].box.Union(sibling.box).Surface() < current {
// // swap n.children[1] and sibling
// n.parent.children, n.children, n.children[1].parent, sibling.parent = [2]*Node[Vec, B, V]{n, n.children[1]}, [2]*Node[Vec, B, V]{sibling, n.children[0]}, n.parent, n
// n.box = n.children[0].box.Union(n.children[1].box)
// }
//}
//
////func lookupPoint[B interface {
//// Union(B) B
//// Surface() float64
////}, V any](n *Node[B, V], point Vec2, f func(v V)) {
//// if n == nil || !n.box.WithIn(point) {
//// return
//// }
//// if n.isLeaf {
//// f(n.Value)
//// } else {
//// lookupVec(n.children[0], point, f)
//// lookupVec(n.children[1], point, f)
//// }
////}
//
////
////func lookupAABB(n *Node, aabb AABB, f func(v interface{})) {
//// if n == nil || !n.box.Touch(aabb) {
//// return
//// }
//// if n.isLeaf {
//// f(n.Value)
//// } else {
//// lookupAABB(n.children[0], aabb, f)
//// lookupAABB(n.children[1], aabb, f)
//// }
////}
//
//type searchHeap[V any] []searchItem[V]
//type searchItem[V any] struct {
// pointer *V
// parentTo **V
// inheritedCost float64
//}
//
//func (h searchHeap[V]) Len() int { return len(h) }
//func (h searchHeap[V]) Less(i, j int) bool { return h[i].inheritedCost < h[j].inheritedCost }
//func (h searchHeap[V]) Swap(i, j int) { h[i], h[j] = h[j], h[i] }
//func (h *searchHeap[V]) Push(x interface{}) { *h = append(*h, x.(searchItem[V])) }
//func (h *searchHeap[V]) Pop() interface{} {
// old := *h
// n := len(old)
// x := old[n-1]
// *h = old[0 : n-1]
// return x
//}
//
//func (t Tree[Vec, B, V]) String() string {
// return t.root.String()
//}
//
//func (n *Node[Vec, B, V]) String() string {
// if n.isLeaf {
// return fmt.Sprint(n.Value)
// } else {
// return fmt.Sprintf("{%v, %v}", n.children[0], n.children[1])
// }
//}