Files
go-mc/bot/phy/phy.go
2021-02-18 14:07:30 +08:00

289 lines
7.3 KiB
Go

// Package phy implements a minimal physics simulation necessary for realistic
// bot behavior.
package phy
import (
"math"
"github.com/Tnze/go-mc/bot/path"
"github.com/Tnze/go-mc/bot/world"
"github.com/Tnze/go-mc/bot/world/entity/player"
"github.com/Tnze/go-mc/data/block/shape"
)
const (
playerWidth = 0.6
playerHeight = 1.8
resetVel = 0.003
maxYawChange = 11
maxPitchChange = 7
stepHeight = 0.6
minJumpTicks = 14
ladderMaxSpeed = 0.15
ladderClimbSpeed = 0.2
gravity = 0.08
drag = 0.98
acceleration = 0.02
inertia = 0.91
slipperiness = 0.6
)
// World represents a provider of information about the surrounding world.
type World interface {
GetBlockStatus(x, y, z int) world.BlockStatus
}
// Surrounds represents the blocks surrounding the player (Y, Z, X).
type Surrounds []AABB
// State tracks physics state.
type State struct {
// player state.
Pos path.Point
Vel path.Point
Yaw, Pitch float64
lastJump uint32
// player state flags.
onGround bool
collision struct {
vertical bool
horizontal bool
}
tick uint32
Run bool
}
func (s *State) ServerPositionUpdate(player player.Pos, w World) error {
s.Pos = path.Point{X: player.X, Y: player.Y, Z: player.Z}
s.Yaw, s.Pitch = float64(player.Yaw), float64(player.Pitch)
s.Vel = path.Point{}
s.onGround, s.collision.vertical, s.collision.horizontal = false, false, false
s.Run = true
return nil
}
func abs(i1, i2 int) int {
if i1 < i2 {
return i2 - i1
}
return i1 - i2
}
func (s *State) surroundings(query AABB, w World) Surrounds {
minY, maxY := int(math.Floor(query.Y.Min))-1, int(math.Floor(query.Y.Max))+1
minZ, maxZ := int(math.Floor(query.Z.Min)), int(math.Floor(query.Z.Max))+1
minX, maxX := int(math.Floor(query.X.Min)), int(math.Floor(query.X.Max))+1
out := Surrounds(make([]AABB, 0, abs(maxY, minY)*abs(maxZ, minZ)*abs(maxX, minX)*2))
for y := minY; y < maxY; y++ {
for z := minZ; z < maxZ; z++ {
for x := minX; x < maxX; x++ {
bStateID := w.GetBlockStatus(x, y, z)
if !path.AirLikeBlock(bStateID) {
bbs, err := shape.CollisionBoxes(bStateID)
if err != nil {
panic(err)
}
for _, box := range bbs {
out = append(out, AABB{
X: MinMax{Min: box.Min.X, Max: box.Max.X},
Y: MinMax{Min: box.Min.Y, Max: box.Max.Y},
Z: MinMax{Min: box.Min.Z, Max: box.Max.Z},
Block: bStateID,
}.Offset(float64(x), float64(y), float64(z)))
}
}
}
}
}
return out
}
func (s *State) BB() AABB {
return AABB{
X: MinMax{Min: -playerWidth / 2, Max: playerWidth / 2},
Y: MinMax{Max: playerHeight},
Z: MinMax{Min: -playerWidth / 2, Max: playerWidth / 2},
}.Offset(s.Pos.X, s.Pos.Y, s.Pos.Z)
}
func (s *State) Position() player.Pos {
return player.Pos{
X: s.Pos.X, Y: s.Pos.Y, Z: s.Pos.Z,
Yaw: float32(s.Yaw), Pitch: float32(s.Pitch),
OnGround: s.onGround,
}
}
func (s *State) Tick(input path.Inputs, w World) error {
s.tick++
if !s.Run {
return nil
}
var inertia = inertia
var acceleration = acceleration
if below := w.GetBlockStatus(int(math.Floor(s.Pos.X)), int(math.Floor(s.Pos.Y))-1, int(math.Floor(s.Pos.Z))); s.onGround && !path.AirLikeBlock(below) {
inertia *= slipperiness
acceleration = 0.1 * (0.1627714 / (inertia * inertia * inertia))
}
s.tickVelocity(input, inertia, acceleration, w)
s.tickPosition(w)
if path.IsLadder(w.GetBlockStatus(int(math.Floor(s.Pos.X)), int(math.Floor(s.Pos.Y)), int(math.Floor(s.Pos.Z)))) && s.collision.horizontal {
s.Vel.Y = ladderClimbSpeed
}
// Gravity
s.Vel.Y -= gravity
// Drag & friction.
s.Vel.Y *= drag
s.Vel.X *= inertia
s.Vel.Z *= inertia
return nil
}
func (s *State) tickVelocity(input path.Inputs, inertia, acceleration float64, w World) {
// Deadzone velocities when they get too low.
if math.Abs(s.Vel.X) < resetVel {
s.Vel.X = 0
}
if math.Abs(s.Vel.Y) < resetVel {
s.Vel.Y = 0
}
if math.Abs(s.Vel.Z) < resetVel {
s.Vel.Z = 0
}
s.applyLookInputs(input)
s.applyPosInputs(input, acceleration, inertia)
lower := w.GetBlockStatus(int(math.Floor(s.Pos.X)), int(math.Floor(s.Pos.Y)), int(math.Floor(s.Pos.Z)))
if path.IsLadder(lower) {
s.Vel.X = math.Min(math.Max(-ladderMaxSpeed, s.Vel.X), ladderMaxSpeed)
s.Vel.Z = math.Min(math.Max(-ladderMaxSpeed, s.Vel.Z), ladderMaxSpeed)
s.Vel.Y = math.Min(math.Max(-ladderMaxSpeed, s.Vel.Y), ladderMaxSpeed)
}
}
func (s *State) applyLookInputs(input path.Inputs) {
if !math.IsNaN(input.Yaw) {
errYaw := math.Min(math.Max(modYaw(input.Yaw, s.Yaw), -maxYawChange), maxYawChange)
s.Yaw += errYaw
}
errPitch := math.Min(math.Max(input.Pitch-s.Pitch, -maxPitchChange), maxPitchChange)
s.Pitch += errPitch
}
func (s *State) applyPosInputs(input path.Inputs, acceleration, inertia float64) {
if input.Jump && s.lastJump+minJumpTicks < s.tick && s.onGround {
s.lastJump = s.tick
s.Vel.Y = 0.42
}
speed := math.Sqrt(input.ThrottleX*input.ThrottleX + input.ThrottleZ*input.ThrottleZ)
if speed < 0.01 {
return
}
speed = acceleration / math.Max(speed, 1)
input.ThrottleX *= speed
input.ThrottleZ *= speed
s.Vel.X += input.ThrottleX
s.Vel.Z += input.ThrottleZ
}
func (s *State) tickPosition(w World) {
p, newVel := s.computeCollisionYXZ(s.BB(), s.BB().Offset(s.Vel.X, s.Vel.Y, s.Vel.Z), s.Vel, w)
if s.onGround || (s.Vel.Y != newVel.Y && s.Vel.Y < 0) {
bb := s.BB()
surroundings := s.surroundings(bb.Offset(s.Vel.X, stepHeight, s.Vel.Z), w)
outVel := s.Vel
outVel.Y = stepHeight
for _, b := range surroundings {
outVel.Y = b.YOffset(bb, outVel.Y)
}
bb = bb.Offset(0, outVel.Y, 0)
for _, b := range surroundings {
outVel.X = b.XOffset(bb, outVel.X)
}
bb = bb.Offset(outVel.X, 0, 0)
for _, b := range surroundings {
outVel.Z = b.ZOffset(bb, outVel.Z)
}
bb = bb.Offset(0, 0, outVel.Z)
outVel.Y *= -1
// Lower the player back down to be on the ground.
for _, b := range surroundings {
outVel.Y = b.YOffset(bb, outVel.Y)
}
bb = bb.Offset(0, outVel.Y, 0)
oldMove := newVel.X*newVel.X + newVel.Z*newVel.Z
newMove := outVel.X*outVel.X + outVel.Z*outVel.Z
if oldMove >= newMove || outVel.Y <= (0.000002-stepHeight) {
// fmt.Println("nope")
} else {
p = bb
newVel = outVel
}
}
// Update flags.
s.Pos.X = p.X.Min + playerWidth/2
s.Pos.Y = p.Y.Min
s.Pos.Z = p.Z.Min + playerWidth/2
s.collision.horizontal = newVel.X != s.Vel.X || newVel.Z != s.Vel.Z
s.collision.vertical = newVel.Y != s.Vel.Y
s.onGround = s.collision.vertical && s.Vel.Y < 0
s.Vel = newVel
}
func modYaw(new, old float64) float64 {
delta := math.Mod(new-old, 360)
if delta > 180 {
delta = 180 - delta
} else if delta < -180 {
delta += 360
}
return delta
}
func (s *State) computeCollisionYXZ(bb, query AABB, vel path.Point, w World) (outBB AABB, outVel path.Point) {
surroundings := s.surroundings(query, w)
outVel = vel
for _, b := range surroundings {
outVel.Y = b.YOffset(bb, outVel.Y)
}
bb = bb.Offset(0, outVel.Y, 0)
for _, b := range surroundings {
outVel.X = b.XOffset(bb, outVel.X)
}
bb = bb.Offset(outVel.X, 0, 0)
for _, b := range surroundings {
outVel.Z = b.ZOffset(bb, outVel.Z)
}
bb = bb.Offset(0, 0, outVel.Z)
return bb, outVel
}
// AtLookTarget returns true if the player look position is actually at the
// given pitch and yaw.
func (s *State) AtLookTarget(yaw, pitch float64) bool {
dYaw, dPitch := math.Abs(modYaw(yaw, s.Yaw)), math.Abs(pitch-s.Pitch)
return dYaw <= 0.8 && dPitch <= 1.1
}