Files
go-mc/net/CFB8/cfb8.go

133 lines
3.3 KiB
Go

// Package CFB8 implements CFB8 block cipher mode of operation used by Minecraft protocol.
package CFB8
import (
"crypto/cipher"
"crypto/subtle"
"unsafe"
)
type CFB8 struct {
c cipher.Block
blockSize int
ivPos int
iv []byte
de bool
}
func NewCFB8Decrypt(c cipher.Block, iv []byte) *CFB8 {
return newCFB8(c, iv, true)
}
func NewCFB8Encrypt(c cipher.Block, iv []byte) *CFB8 {
return newCFB8(c, iv, false)
}
func newCFB8(c cipher.Block, iv []byte, de bool) *CFB8 {
cp := make([]byte, len(iv)*3)
copy(cp, iv)
return &CFB8{
c: c,
blockSize: c.BlockSize(),
iv: cp,
de: de,
}
}
func (cf *CFB8) XORKeyStream(dst, src []byte) {
if len(dst) < len(src) {
panic("cfb8: output smaller than input")
}
// If dst and src does not overlap in first block size,
// and the length of src is greater than 2*blockSize,
// we can use an optimized implementation.
if len(src) > cf.blockSize<<1 &&
(uintptr(unsafe.Pointer(&dst[0]))+uintptr(cf.blockSize) <= uintptr(unsafe.Pointer(&src[0])) ||
uintptr(unsafe.Pointer(&src[0]))+uintptr(len(src)) <= uintptr(unsafe.Pointer(&dst[0]))) {
// encrypt/decrypt first blockSize bytes
// After this, the IV will come to the same as
// the last blockSize of ciphertext, so
// we can reuse them without copy.
cf.xorKeyStream(dst, src[:cf.blockSize])
var ciphertext []byte
if cf.de {
ciphertext = src
} else {
ciphertext = dst
}
dst = dst[cf.blockSize:]
src = src[cf.blockSize:]
iv := cf.iv
_ = iv[0] // bounds check hint to compiler; see golang.org/issue/14808
var (
i int
val byte
)
dst = dst[:len(src)]
if cf.de {
for i = 0; i < len(src)-cf.blockSize; i += 1 {
cf.c.Encrypt(dst[i:], ciphertext[i:])
}
subtle.XORBytes(dst, src[:i], dst)
for ; i < len(src); i += 1 {
cf.c.Encrypt(iv, ciphertext[i:])
dst[i] = src[i] ^ iv[0]
}
} else {
_ = ciphertext[len(src)]
for i, val = range src {
cf.c.Encrypt(iv, ciphertext[i:])
dst[i] = val ^ iv[0]
}
// for-range does not increase i in the last loop,
// compared to the classic for clause
i += 1
}
// copy the current IV for next operation
copy(iv, ciphertext[i:i+cf.blockSize])
cf.ivPos = 0
return
}
cf.xorKeyStream(dst, src)
}
func (cf *CFB8) xorKeyStream(dst, src []byte) {
dst = dst[:len(src)] // remove bounds check in loop
for i, val := range src {
posPlusBlockSize := cf.ivPos + cf.blockSize
// fast mod; 2*blockSize must be a non-negative integer power of 2
tempPos := posPlusBlockSize & (cf.blockSize<<1 - 1)
// reuse space to store encrypted block
cf.c.Encrypt(cf.iv[tempPos:], cf.iv[cf.ivPos:])
// Only the first byte of the encrypted block is used
// for encryption/decryption, other bytes are ignored.
val ^= cf.iv[tempPos]
if cf.ivPos == cf.blockSize<<1 {
// bound reached; move to next round for next operation
// copy next block to the start of the ring buffer
copy(cf.iv, cf.iv[cf.ivPos+1:])
// insert the encrypted byte to the end of IV
if cf.de {
cf.iv[cf.blockSize-1] = src[i]
} else {
cf.iv[cf.blockSize-1] = val
}
cf.ivPos = 0
} else {
// insert the encrypted byte to the end of IV
if cf.de {
cf.iv[posPlusBlockSize] = src[i]
} else {
cf.iv[posPlusBlockSize] = val
}
// move to next block
cf.ivPos += 1
}
dst[i] = val
}
}