Files
go-mc/nbt/decode.go
patyhank 185020e31c
Some checks failed
CodeQL / Analyze (go) (push) Has been cancelled
Go / Test (1.22) (push) Has been cancelled
Go / Test (^1.22) (push) Has been cancelled
Squashed below commits
nbt chat message

fixes some bug

chunk temp

relocate module

items id
2025-08-27 20:29:40 +08:00

691 lines
17 KiB
Go

package nbt
import (
"bytes"
"encoding"
"errors"
"fmt"
"io"
"math"
"reflect"
"strings"
)
// Unmarshal decode binary NBT data and fill into v
// This is a shortcut to `NewDecoder(bytes.NewReader(data)).Decode(v)`.
func Unmarshal(data []byte, v any) error {
_, err := NewDecoder(bytes.NewReader(data)).Decode(v)
return err
}
// Decode method decodes an NBT value from the reader underline the Decoder into v.
// Internally try to handle all possible v by reflection,
// but the type of v must matches the NBT value logically.
// For example, you can decode an NBT value which root tag is TagCompound(0x0a)
// into a struct or map, but not a string.
//
// If v implement Unmarshaler, the method will be called and override the default behavior.
// Else if v implement encoding.TextUnmarshaler, the value will be encoded as TagString.
//
// This method also return tag name of the root tag.
// In real world, it is often empty, but the API should allow you to get it when ever you want.
func (d *Decoder) Decode(v any) (string, error) {
val := reflect.ValueOf(v)
if val.Kind() != reflect.Ptr {
return "", errors.New("nbt: non-pointer passed to Decode")
}
// start read NBT
var tagType byte
var tagName string
var err error
if d.networkFormat {
tagType, err = d.r.ReadByte()
} else {
tagType, tagName, err = d.readTag()
}
if err != nil {
return tagName, fmt.Errorf("nbt: %w", err)
}
// We decode val not val.Elem because the Unmarshaler interface
// test must be applied at the top level of the value.
err = d.unmarshal(val, tagType)
if err != nil {
return tagName, fmt.Errorf("nbt: fail to decode tag %q: %w", tagName, err)
}
return tagName, nil
}
// checkCompressed check if the first byte is compress head
func (d *Decoder) checkCompressed(head byte) (compress string) {
switch head {
case 0x1f:
return "gzip"
case 0x78:
return "zlib"
default:
return ""
}
}
// ErrEND error will be returned when reading a NBT with only Tag_End
var ErrEND = errors.New("unexpected TAG_End")
func (d *Decoder) unmarshal(val reflect.Value, tagType byte) error {
u, t, val, assign := indirect(val, tagType == TagEnd)
if assign != nil {
defer assign()
}
if u != nil {
return u.UnmarshalNBT(tagType, d.r)
}
switch tagType {
default:
return fmt.Errorf("unknown Tag %#02x", tagType)
case TagEnd:
return ErrEND
case TagByte:
value, err := d.readInt8()
if err != nil {
return err
}
switch vk := val.Kind(); vk {
default:
return errors.New("cannot parse TagByte as " + vk.String())
case reflect.Bool:
val.SetBool(value != 0)
case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64:
val.SetInt(int64(value))
case reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64:
val.SetUint(uint64(value))
case reflect.Interface:
val.Set(reflect.ValueOf(value))
}
case TagShort:
value, err := d.readInt16()
if err != nil {
return err
}
switch vk := val.Kind(); vk {
default:
return errors.New("cannot parse TagShort as " + vk.String())
case reflect.Int, reflect.Int16, reflect.Int32, reflect.Int64:
val.SetInt(int64(value))
case reflect.Uint, reflect.Uint16, reflect.Uint32, reflect.Uint64:
val.SetUint(uint64(value))
case reflect.Interface:
val.Set(reflect.ValueOf(value))
}
case TagInt:
value, err := d.readInt32()
if err != nil {
return err
}
switch vk := val.Kind(); vk {
default:
return errors.New("cannot parse TagInt as " + vk.String())
case reflect.Int, reflect.Int32, reflect.Int64:
val.SetInt(int64(value))
case reflect.Uint, reflect.Uint32, reflect.Uint64:
val.SetUint(uint64(value))
case reflect.Interface:
val.Set(reflect.ValueOf(value))
}
case TagFloat:
vInt, err := d.readInt32()
if err != nil {
return err
}
value := math.Float32frombits(uint32(vInt))
switch vk := val.Kind(); vk {
default:
return errors.New("cannot parse TagFloat as " + vk.String())
case reflect.Float32:
val.Set(reflect.ValueOf(value))
case reflect.Float64:
val.Set(reflect.ValueOf(float64(value)))
case reflect.Interface:
val.Set(reflect.ValueOf(value))
}
case TagLong:
value, err := d.readInt64()
if err != nil {
return err
}
switch vk := val.Kind(); vk {
default:
return errors.New("cannot parse TagLong as " + vk.String())
case reflect.Int, reflect.Int64:
val.SetInt(int64(value))
case reflect.Uint, reflect.Uint64:
val.SetUint(uint64(value))
case reflect.Interface:
val.Set(reflect.ValueOf(value))
}
case TagDouble:
vInt, err := d.readInt64()
if err != nil {
return err
}
value := math.Float64frombits(uint64(vInt))
switch vk := val.Kind(); vk {
default:
return errors.New("cannot parse TagDouble as " + vk.String())
case reflect.Float64:
val.Set(reflect.ValueOf(value))
case reflect.Interface:
val.Set(reflect.ValueOf(value))
}
case TagString:
s, err := d.readString()
if err != nil {
return err
}
if t != nil {
err := t.UnmarshalText([]byte(s))
if err != nil {
return err
}
} else {
switch vk := val.Kind(); vk {
default:
return errors.New("cannot parse TagString as " + vk.String())
case reflect.String:
val.SetString(s)
case reflect.Interface:
val.Set(reflect.ValueOf(s))
}
}
case TagByteArray:
aryLen, err := d.readInt32()
if err != nil {
return err
}
if aryLen < 0 {
return errors.New("byte array len less than 0")
}
ba := make([]byte, aryLen)
if _, err = io.ReadFull(d.r, ba); err != nil {
return err
}
vt := val.Type()
if vt == reflect.TypeOf(ba) {
val.SetBytes(ba)
} else if vt.Kind() == reflect.Slice {
switch ve := vt.Elem(); ve.Kind() {
case reflect.Int8, reflect.Uint8:
length := int(aryLen)
if val.Cap() < length {
val.Set(reflect.MakeSlice(vt, length, length))
}
val.SetLen(length)
switch ve.Kind() {
case reflect.Int8:
for i := 0; i < length; i++ {
val.Index(i).Set(reflect.ValueOf(int8(ba[i])))
}
case reflect.Uint8:
for i := 0; i < length; i++ {
val.Index(i).Set(reflect.ValueOf(ba[i]))
}
}
default:
return errors.New("cannot parse TagByteArray to slice of" + ve.String())
}
} else if vt.Kind() == reflect.Interface {
val.Set(reflect.ValueOf(ba))
} else {
return errors.New("cannot parse TagByteArray to " + vt.String())
}
case TagIntArray:
aryLen, err := d.readInt32()
if err != nil {
return err
}
vt := val.Type() // receiver must be []int or []int32
if vt.Kind() == reflect.Interface {
vt = reflect.TypeOf([]int32{}) // pass
} else if vt.Kind() == reflect.Array && vt.Len() != int(aryLen) {
return errors.New("cannot parse TagIntArray to " + vt.String() + ", length not match")
} else if k := vt.Kind(); k != reflect.Slice && k != reflect.Array {
return errors.New("cannot parse TagIntArray to " + vt.String() + ", it must be a slice")
} else if tk := val.Type().Elem().Kind(); tk != reflect.Int && tk != reflect.Int32 {
return errors.New("cannot parse TagIntArray to " + vt.String())
}
buf := val
if vt.Kind() == reflect.Slice {
buf = reflect.MakeSlice(vt, int(aryLen), int(aryLen))
}
for i := 0; i < int(aryLen); i++ {
value, err := d.readInt32()
if err != nil {
return err
}
buf.Index(i).SetInt(int64(value))
}
if vt.Kind() == reflect.Slice {
val.Set(buf)
}
case TagLongArray:
aryLen, err := d.readInt32()
if err != nil {
return err
}
vt := val.Type() // receiver must be []int or []int64
if vt.Kind() == reflect.Interface {
vt = reflect.TypeOf([]int64{}) // pass
} else if vt.Kind() != reflect.Slice {
return errors.New("cannot parse TagLongArray to " + vt.String() + ", it must be a slice")
}
switch vt.Elem().Kind() {
case reflect.Int64:
buf := reflect.MakeSlice(vt, int(aryLen), int(aryLen))
for i := 0; i < int(aryLen); i++ {
value, err := d.readInt64()
if err != nil {
return err
}
buf.Index(i).SetInt(value)
}
val.Set(buf)
case reflect.Uint64:
buf := reflect.MakeSlice(vt, int(aryLen), int(aryLen))
for i := 0; i < int(aryLen); i++ {
value, err := d.readInt64()
if err != nil {
return err
}
buf.Index(i).SetUint(uint64(value))
}
val.Set(buf)
default:
return errors.New("cannot parse TagLongArray to " + vt.String())
}
case TagList:
listType, err := d.r.ReadByte()
if err != nil {
return err
}
listLen, err := d.readInt32()
if err != nil {
return err
}
if listLen < 0 {
return errors.New("list length less than 0")
}
// If we need parse TAG_List into slice, make a new with right length.
// Otherwise, if we need parse into array, we check if len(array) are enough.
var buf reflect.Value
vk := val.Kind()
switch vk {
default:
return errors.New("cannot parse TagList as " + vk.String())
case reflect.Interface:
buf = reflect.ValueOf(make([]any, listLen))
case reflect.Slice:
buf = reflect.MakeSlice(val.Type(), int(listLen), int(listLen))
case reflect.Array:
if vl := val.Len(); vl < int(listLen) {
return fmt.Errorf(
"TagList has len %d, but array %v only has len %d",
listLen, val.Type(), vl)
}
buf = val
}
for i := 0; i < int(listLen); i++ {
if err := d.unmarshal(buf.Index(i), listType); err != nil {
return err
}
}
if vk != reflect.Array {
val.Set(buf)
}
case TagCompound:
u, ut, val, assign := indirect(val, false)
if assign != nil {
defer assign()
}
if u != nil {
return u.UnmarshalNBT(tagType, d.r)
}
if ut != nil {
return errors.New("cannot decode TagCompound as string")
}
switch vk := val.Kind(); vk {
case reflect.Struct:
fields := cachedTypeFields(val.Type())
for {
tt, tn, err := d.readTag()
if err != nil {
return err
}
if tt == TagEnd {
break
}
var f *field
if i, ok := fields.nameIndex[tn]; ok {
f = &fields.list[i]
} else {
// Fall back to linear search.
for i := range fields.list {
ff := &fields.list[i]
if strings.EqualFold(ff.name, tn) || ff.asDefault && tn == "" {
f = ff
break
}
}
}
if f != nil {
val := val
for _, i := range f.index {
if val.Kind() == reflect.Pointer {
if val.IsNil() {
// If a struct embeds a pointer to an unexported type,
// it is not possible to set a newly allocated value
// since the field is unexported.
if !val.CanSet() {
return fmt.Errorf("cannot set embedded pointer to unexported struct: %v", val.Type().Elem())
}
val.Set(reflect.New(val.Type().Elem()))
}
val = val.Elem()
}
val = val.Field(i)
}
err = d.unmarshal(val, tt)
if err != nil {
return fmt.Errorf("fail to decode tag %q: %w", tn, err)
}
} else if d.disallowUnknownFields {
return fmt.Errorf("unknown field %q", tn)
} else if err := d.rawRead(tt); err != nil {
return err
}
}
case reflect.Map:
vt := val.Type()
if vt.Key().Kind() != reflect.String {
return errors.New("cannot parse TagCompound as " + val.Type().String())
}
if val.IsNil() {
val.Set(reflect.MakeMap(vt))
}
for {
tt, tn, err := d.readTag()
if err != nil {
return err
}
if tt == TagEnd {
break
}
v := reflect.New(val.Type().Elem())
if err = d.unmarshal(v.Elem(), tt); err != nil {
return fmt.Errorf("fail to decode tag %q: %w", tn, err)
}
val.SetMapIndex(reflect.ValueOf(tn), v.Elem())
}
case reflect.Interface:
buf := make(map[string]any)
for {
tt, tn, err := d.readTag()
if err != nil {
return err
}
if tt == TagEnd {
break
}
var value any
if err = d.unmarshal(reflect.ValueOf(&value).Elem(), tt); err != nil {
return fmt.Errorf("fail to decode tag %q: %w", tn, err)
}
buf[tn] = value
}
val.Set(reflect.ValueOf(buf))
default:
return errors.New("cannot parse TagCompound as " + vk.String())
}
}
return nil
}
// indirect walks down v allocating pointers as needed,
// until it gets to a non-pointer.
// If it encounters an Unmarshaler, indirect stops and returns that.
// If decodingNull is true, indirect stops at the first settable pointer, so it
// can be set to nil.
//
// This function is copied and modified from encoding/json
func indirect(v reflect.Value, decodingNull bool) (Unmarshaler, encoding.TextUnmarshaler, reflect.Value, func()) {
v0 := v
haveAddr := false
var assign func()
// If v is a named type and is addressable,
// start with its address, so that if the type has pointer methods,
// we find them.
if v.Kind() != reflect.Ptr && v.Type().Name() != "" && v.CanAddr() {
haveAddr = true
v = v.Addr()
}
for {
// Load value from interface, but only if the result will be
// usefully addressable.
// Otherwise, try init a new value
if v.Kind() == reflect.Interface && !v.IsNil() {
e := v.Elem()
if e.Kind() == reflect.Ptr && !e.IsNil() && (!decodingNull || e.Elem().Kind() == reflect.Ptr) {
haveAddr = false
v = e
continue
} else if v.CanSet() {
e = reflect.New(e.Type())
cv := v
assign = func() { cv.Set(e.Elem()) }
v = e
continue
}
}
if v.Kind() != reflect.Ptr {
break
}
if decodingNull && v.CanSet() {
break
}
// Prevent infinite loop if v is an interface pointing to its own address:
// var v any
// v = &v
if v.Elem().Kind() == reflect.Interface && v.Elem().Elem() == v {
v = v.Elem()
break
}
if v.IsNil() {
v.Set(reflect.New(v.Type().Elem()))
}
if v.Type().NumMethod() > 0 && v.CanInterface() {
i := v.Interface()
if u, ok := i.(Unmarshaler); ok {
return u, nil, reflect.Value{}, assign
}
if u, ok := i.(encoding.TextUnmarshaler); ok {
return nil, u, v, assign
}
}
if haveAddr {
v = v0 // restore original value after round-trip Value.Addr().Elem()
haveAddr = false
} else {
v = v.Elem()
}
}
return nil, nil, v, assign
}
// rawRead read and discard a value
func (d *Decoder) rawRead(tagType byte) error {
var buf [8]byte
switch tagType {
default:
return fmt.Errorf("unknown to read %#02x", tagType)
case TagByte:
_, err := d.readInt8()
return err
case TagString:
_, err := d.readString()
return err
case TagShort:
_, err := io.ReadFull(d.r, buf[:2])
return err
case TagInt, TagFloat:
_, err := io.ReadFull(d.r, buf[:4])
return err
case TagLong, TagDouble:
_, err := io.ReadFull(d.r, buf[:8])
return err
case TagByteArray:
aryLen, err := d.readInt32()
if err != nil {
return err
}
if _, err = io.CopyN(io.Discard, d.r, int64(aryLen)); err != nil {
return err
}
case TagIntArray:
aryLen, err := d.readInt32()
if err != nil {
return err
}
for i := 0; i < int(aryLen); i++ {
if _, err := d.readInt32(); err != nil {
return err
}
}
case TagLongArray:
aryLen, err := d.readInt32()
if err != nil {
return err
}
for i := 0; i < int(aryLen); i++ {
if _, err := d.readInt64(); err != nil {
return err
}
}
case TagList:
listType, err := d.r.ReadByte()
if err != nil {
return err
}
listLen, err := d.readInt32()
if err != nil {
return err
}
for i := 0; i < int(listLen); i++ {
if err := d.rawRead(listType); err != nil {
return err
}
}
case TagCompound:
for {
tt, _, err := d.readTag()
if err != nil {
return err
}
if tt == TagEnd {
break
}
err = d.rawRead(tt)
if err != nil {
return err
}
}
}
return nil
}
func (d *Decoder) readTag() (tagType byte, tagName string, err error) {
tagType, err = d.r.ReadByte()
if err != nil {
return
}
switch tagType {
case 0x1f, 0x78:
c := d.checkCompressed(tagType)
err = fmt.Errorf("nbt: unknown Tag %#02x, which seems like %s header and you should uncompress it first", tagType, c)
case TagEnd:
default: // Read Tag
tagName, err = d.readString()
}
return
}
func (d *Decoder) readInt8() (int8, error) {
b, err := d.r.ReadByte()
// TagByte is signed byte (that's what in Java), so we need to convert to int8
return int8(b), err
}
func (d *Decoder) readInt16() (int16, error) {
var data [2]byte
_, err := io.ReadFull(d.r, data[:])
return int16(data[0])<<8 | int16(data[1]), err
}
func (d *Decoder) readInt32() (int32, error) {
var data [4]byte
_, err := io.ReadFull(d.r, data[:])
return int32(data[0])<<24 | int32(data[1])<<16 |
int32(data[2])<<8 | int32(data[3]), err
}
func (d *Decoder) readInt64() (int64, error) {
var data [8]byte
_, err := io.ReadFull(d.r, data[:])
return int64(data[0])<<56 | int64(data[1])<<48 |
int64(data[2])<<40 | int64(data[3])<<32 |
int64(data[4])<<24 | int64(data[5])<<16 |
int64(data[6])<<8 | int64(data[7]), err
}
func (d *Decoder) readString() (string, error) {
length, err := d.readInt16()
if err != nil {
return "", err
} else if length < 0 {
return "", errors.New("string length less than 0")
}
var str string
if length > 0 {
buf := make([]byte, length)
_, err = io.ReadFull(d.r, buf)
str = string(buf)
}
return str, err
}