package nbt import ( "reflect" "sort" "strings" "sync" ) type structFields struct { list []field nameIndex map[string]int // index of the previous slice. } type field struct { name string tag bool index []int typ reflect.Type omitEmpty bool asDefault bool asList bool } // byIndex sorts field by index sequence. type byIndex []field func (x byIndex) Len() int { return len(x) } func (x byIndex) Swap(i, j int) { x[i], x[j] = x[j], x[i] } func (x byIndex) Less(i, j int) bool { for k, xik := range x[i].index { if k >= len(x[j].index) { return false } if xik != x[j].index[k] { return xik < x[j].index[k] } } return len(x[i].index) < len(x[j].index) } func typeFields(t reflect.Type) (tInfo structFields) { // Anonymous fields to explore at the current level and the next. current := []field{} next := []field{{typ: t}} // Count of queued names for current level and the next. var count, nextCount map[reflect.Type]int // Types already visited at an earlier level. visited := make(map[reflect.Type]struct{}) // Fields found. var fields []field for len(next) > 0 { current, next = next, current[:0] count, nextCount = nextCount, make(map[reflect.Type]int) for _, f := range current { if _, ok := visited[f.typ]; ok { continue } visited[f.typ] = struct{}{} // Scan f.typ for fields to include. for i := 0; i < f.typ.NumField(); i++ { sf := f.typ.Field(i) if sf.Anonymous { t := sf.Type if t.Kind() == reflect.Pointer { t = t.Elem() } if !sf.IsExported() && t.Kind() != reflect.Struct { // Ignore embedded fields of unexported non-struct types. continue } // Do not ignore embedded fields of unexported struct types // since they may have exported fields. } else if !sf.IsExported() { // Ignore unexported non-embedded fields. continue } tag := sf.Tag.Get("nbt") if tag == "-" { continue } // parse tags name, opts, _ := strings.Cut(tag, ",") index := make([]int, len(f.index)+1) copy(index, f.index) index[len(f.index)] = i if keytag := sf.Tag.Get("nbtkey"); keytag != "" { name = keytag } ft := sf.Type if ft.Name() == "" && ft.Kind() == reflect.Pointer { // Follow pointer. ft = ft.Elem() } // parse options var omitEmpty, asList, asDefault bool for opts != "" { var name string name, opts, _ = strings.Cut(opts, ",") switch name { case "omitempty": omitEmpty = true case "list": asList = true case "default": asDefault = true } } // Deprecated: use `nbt:",list"` instead. if sf.Tag.Get("nbt_type") == "list" { asList = true } // Record found field and index sequence. if name != "" || !sf.Anonymous || ft.Kind() != reflect.Struct { tagged := name != "" if name == "" { name = sf.Name } field := field{ name: name, tag: tagged, index: index, typ: ft, omitEmpty: omitEmpty, asDefault: asDefault, asList: asList, } fields = append(fields, field) if count[f.typ] > 1 { // If there were multiple instances, add a second, // so that the annihilation code will see a duplicate. // It only cares about the distinction between 1 or 2, // so don't bother generating any more copies. fields = append(fields, fields[len(fields)-1]) } continue } // Record new anonymous struct to explore in next round. nextCount[ft]++ if nextCount[ft] == 1 { next = append(next, field{name: ft.Name(), index: index, typ: ft}) } } } } sort.Slice(fields, func(i, j int) bool { x := fields // sort field by name, breaking ties with depth, then // breaking ties with "name came from json tag", then // breaking ties with index sequence. if x[i].name != x[j].name { return x[i].name < x[j].name } if len(x[i].index) != len(x[j].index) { return len(x[i].index) < len(x[j].index) } if x[i].tag != x[j].tag { return x[i].tag } return byIndex(x).Less(i, j) }) // Delete all fields that are hidden by the Go rules for embedded fields, // except that fields with JSON tags are promoted. // The fields are sorted in primary order of name, secondary order // of field index length. Loop over names; for each name, delete // hidden fields by choosing the one dominant field that survives. out := fields[:0] for advance, i := 0, 0; i < len(fields); i += advance { // One iteration per name. // Find the sequence of fields with the name of this first field. fi := fields[i] name := fi.name for advance = 1; i+advance < len(fields); advance++ { fj := fields[i+advance] if fj.name != name { break } } if advance == 1 { // Only one field with this name out = append(out, fi) continue } dominant, ok := dominantField(fields[i : i+advance]) if ok { out = append(out, dominant) } } fields = out sort.Sort(byIndex(fields)) nameIndex := make(map[string]int, len(fields)) for i, field := range fields { nameIndex[field.name] = i } return structFields{ list: fields, nameIndex: nameIndex, } } // dominantField looks through the fields, all of which are known to // have the same name, to find the single field that dominates the // others using Go's embedding rules, modified by the presence of // NBT tags. If there are multiple top-level fields, the boolean // will be false: This condition is an error in Go and we skip all // the fields. func dominantField(fields []field) (field, bool) { // The fields are sorted in increasing index-length order, then by presence of tag. // That means that the first field is the dominant one. We need only check // for error cases: two fields at top level, either both tagged or neither tagged. if len(fields) > 1 && len(fields[0].index) == len(fields[1].index) && fields[0].tag == fields[1].tag { return field{}, false } return fields[0], true } var fieldCache sync.Map func cachedTypeFields(t reflect.Type) structFields { if ti, ok := fieldCache.Load(t); ok { return ti.(structFields) } tInfo := typeFields(t) ti, _ := fieldCache.LoadOrStore(t, tInfo) return ti.(structFields) }