Replicate vanilla physics, make pathing movements smooth

This commit is contained in:
Tom
2020-09-25 23:24:12 -07:00
parent 8384eb99de
commit cadc1cab3a
5 changed files with 159 additions and 75 deletions

View File

@ -17,7 +17,7 @@ const (
playerHeight = 1.8
resetVel = 0.003
maxYawChange = 33
maxYawChange = 18
maxPitchChange = 11
stepHeight = 0.6
@ -60,10 +60,11 @@ type State struct {
}
func (s *State) ServerPositionUpdate(player player.Pos, w World) error {
fmt.Printf("TELEPORT (y=%0.2f, velY=%0.3f): %0.2f, %0.2f, %0.2f\n", s.Pos.Y, s.Vel.Y, player.X-s.Pos.X, player.Y-s.Pos.Y, player.Z-s.Pos.Z)
s.Pos = path.Point{X: player.X, Y: player.Y, Z: player.Z}
s.Yaw, s.Pitch = float64(player.Yaw), float64(player.Pitch)
s.Vel = path.Point{}
fmt.Println("TELEPORT!")
s.onGround, s.collision.vertical, s.collision.horizontal = false, false, false
s.Run = true
return nil
@ -127,68 +128,7 @@ func (s *State) Tick(input path.Inputs, w World) error {
if !s.Run {
return nil
}
s.tickVelocity(input, w)
player, newVel := s.computeCollision(s.BB(), s.BB().Extend(s.Vel.X, s.Vel.Y, s.Vel.Z), w)
bb := player.Extend(s.Vel.X, stepHeight, s.Vel.Z)
surroundings := s.surroundings(bb, w)
y := float64(0)
for _, b := range surroundings {
if b.Intersects(bb) && bb.Y.Max > b.Y.Min {
y = math.Max(y, b.Y.Max)
}
}
//fmt.Printf("pY = %.2f, maxblockY = %.1f (delta = %.1f)\n", bb.Y.Min, y, bb.Y.Min-y)
if d := bb.Y.Min - y; d >= -stepHeight && d < stepHeight-1 {
bb := player.Offset(0, -d, 0)
player, newVel = s.computeCollision(bb, bb.Extend(s.Vel.X, s.Vel.Y, s.Vel.Z), w)
}
// Update flags.
s.Pos.X = player.X.Min + playerWidth/2
s.Pos.Y = player.Y.Min
s.Pos.Z = player.Z.Min + playerWidth/2
s.collision.horizontal = newVel.X != s.Vel.X || newVel.Z != s.Vel.Z
s.collision.vertical = newVel.Y != s.Vel.Y
s.onGround = s.collision.vertical && s.Vel.Y < 0
if path.IsLadder(w.GetBlockStatus(int(math.Floor(s.Pos.X)), int(math.Floor(s.Pos.Y)), int(math.Floor(s.Pos.Z)))) && s.collision.horizontal {
newVel.Y = ladderClimbSpeed
}
s.Vel = newVel
return nil
}
func (s *State) applyLookInputs(input path.Inputs) {
errYaw := math.Min(math.Max(input.Yaw-s.Yaw, -maxYawChange), maxYawChange)
s.Yaw += errYaw
errPitch := math.Min(math.Max(input.Pitch-s.Pitch, -maxPitchChange), maxPitchChange)
s.Pitch += errPitch
}
func (s *State) applyPosInputs(input path.Inputs, acceleration, inertia float64) {
// fmt.Println(input.Jump, s.lastJump, s.onGround)
if input.Jump && s.lastJump+minJumpTicks < s.tick {
s.lastJump = s.tick
s.Vel.Y += 0.42
}
speed := math.Sqrt(input.ThrottleX*input.ThrottleX + input.ThrottleZ*input.ThrottleZ)
if speed < 0.01 {
return
}
speed = acceleration / math.Max(speed, 1)
input.ThrottleX *= speed
input.ThrottleZ *= speed
s.Vel.X += input.ThrottleX
s.Vel.Z += input.ThrottleZ
}
func (s *State) tickVelocity(input path.Inputs, w World) {
var inertia = inertia
var acceleration = acceleration
if below := w.GetBlockStatus(int(math.Floor(s.Pos.X)), int(math.Floor(s.Pos.Y))-1, int(math.Floor(s.Pos.Z))); s.onGround && !path.AirLikeBlock(below) {
@ -196,6 +136,24 @@ func (s *State) tickVelocity(input path.Inputs, w World) {
acceleration = 0.1 * (0.1627714 / (inertia * inertia * inertia))
}
s.tickVelocity(input, inertia, acceleration, w)
s.tickPosition(w)
if path.IsLadder(w.GetBlockStatus(int(math.Floor(s.Pos.X)), int(math.Floor(s.Pos.Y)), int(math.Floor(s.Pos.Z)))) && s.collision.horizontal {
s.Vel.Y = ladderClimbSpeed
}
// Gravity
s.Vel.Y -= gravity
// Drag & friction.
s.Vel.Y *= drag
s.Vel.X *= inertia
s.Vel.Z *= inertia
return nil
}
func (s *State) tickVelocity(input path.Inputs, inertia, acceleration float64, w World) {
// Deadzone velocities when they get too low.
if math.Abs(s.Vel.X) < resetVel {
s.Vel.X = 0
@ -216,18 +174,108 @@ func (s *State) tickVelocity(input path.Inputs, w World) {
s.Vel.Z = math.Min(math.Max(-ladderMaxSpeed, s.Vel.Z), ladderMaxSpeed)
s.Vel.Y = math.Min(math.Max(-ladderMaxSpeed, s.Vel.Y), ladderMaxSpeed)
}
// Gravity
s.Vel.Y -= gravity
// Drag & friction.
s.Vel.Y *= drag
s.Vel.X *= inertia
s.Vel.Z *= inertia
}
func (s *State) computeCollision(bb, query AABB, w World) (outBB AABB, outVel path.Point) {
func (s *State) applyLookInputs(input path.Inputs) {
if !math.IsNaN(input.Yaw) {
errYaw := math.Min(math.Max(modYaw(input.Yaw, s.Yaw), -maxYawChange), maxYawChange)
s.Yaw += errYaw
}
errPitch := math.Min(math.Max(input.Pitch-s.Pitch, -maxPitchChange), maxPitchChange)
s.Pitch += errPitch
}
func (s *State) applyPosInputs(input path.Inputs, acceleration, inertia float64) {
// fmt.Println(input.Jump, s.lastJump, s.onGround)
if input.Jump && s.lastJump+minJumpTicks < s.tick && s.onGround {
s.lastJump = s.tick
s.Vel.Y = 0.42
}
speed := math.Sqrt(input.ThrottleX*input.ThrottleX + input.ThrottleZ*input.ThrottleZ)
if speed < 0.01 {
return
}
speed = acceleration / math.Max(speed, 1)
input.ThrottleX *= speed
input.ThrottleZ *= speed
s.Vel.X += input.ThrottleX
s.Vel.Z += input.ThrottleZ
}
func (s *State) tickPosition(w World) {
// fmt.Printf("TICK POSITION: %0.2f, %0.2f, %0.2f - (%0.2f, %0.2f, %0.2f)\n", s.Pos.X, s.Pos.Y, s.Pos.Z, s.Vel.X, s.Vel.Y, s.Vel.Z)
player, newVel := s.computeCollisionYXZ(s.BB(), s.BB().Offset(s.Vel.X, s.Vel.Y, s.Vel.Z), s.Vel, w)
//fmt.Printf("offset = %0.2f, %0.2f, %0.2f\n", player.X.Min-s.Pos.X, player.Y.Min-s.Pos.Y, player.Z.Min-s.Pos.Z)
//fmt.Printf("onGround = %v, s.Vel.Y = %0.3f, newVel.Y = %0.3f\n", s.onGround, s.Vel.Y, newVel.Y)
if s.onGround || (s.Vel.Y != newVel.Y && s.Vel.Y < 0) {
bb := s.BB()
//fmt.Printf("Player pos = %0.2f, %0.2f, %0.2f\n", bb.X.Min, bb.Y.Min, bb.Z.Min)
surroundings := s.surroundings(bb.Offset(s.Vel.X, stepHeight, s.Vel.Y), w)
outVel := s.Vel
outVel.Y = stepHeight
for _, b := range surroundings {
outVel.Y = b.YOffset(bb, outVel.Y)
}
bb = bb.Offset(0, outVel.Y, 0)
for _, b := range surroundings {
outVel.X = b.XOffset(bb, outVel.X)
}
bb = bb.Offset(outVel.X, 0, 0)
for _, b := range surroundings {
outVel.Z = b.ZOffset(bb, outVel.Z)
}
bb = bb.Offset(0, 0, outVel.Z)
//fmt.Printf("Post-collision = %0.2f, %0.2f, %0.2f\n", bb.X.Min, bb.Y.Min, bb.Z.Min)
outVel.Y *= -1
// Lower the player back down to be on the ground.
for _, b := range surroundings {
outVel.Y = b.YOffset(bb, outVel.Y)
}
bb = bb.Offset(0, outVel.Y, 0)
//fmt.Printf("Post-lower = %0.2f, %0.2f, %0.2f\n", bb.X.Min, bb.Y.Min, bb.Z.Min)
oldMove := newVel.X*newVel.X + newVel.Z*newVel.Z
newMove := outVel.X*outVel.X + outVel.Z*outVel.Z
// fmt.Printf("oldMove = %0.2f, newMove = %0.2f\n", oldMove*1000, newMove*1000)
if oldMove >= newMove || outVel.Y <= (0.000002-stepHeight) {
// fmt.Println("nope")
} else {
player = bb
newVel = outVel
}
}
// Update flags.
s.Pos.X = player.X.Min + playerWidth/2
s.Pos.Y = player.Y.Min
s.Pos.Z = player.Z.Min + playerWidth/2
s.collision.horizontal = newVel.X != s.Vel.X || newVel.Z != s.Vel.Z
s.collision.vertical = newVel.Y != s.Vel.Y
s.onGround = s.collision.vertical && s.Vel.Y < 0
s.Vel = newVel
}
func modYaw(new, old float64) float64 {
delta := math.Mod(new-old, 360)
if delta > 180 {
delta = 180 - delta
} else if delta < -180 {
delta += 360
}
// fmt.Printf("(%.2f - %.2f) = %.2f\n", new, old, delta)
return delta
}
func (s *State) computeCollisionYXZ(bb, query AABB, vel path.Point, w World) (outBB AABB, outVel path.Point) {
surroundings := s.surroundings(query, w)
outVel = s.Vel
outVel = vel
for _, b := range surroundings {
outVel.Y = b.YOffset(bb, outVel.Y)